Effect of Ultra-High Pressure on the Characterization of Ursolic Acid/β-Cyclodextrin Inclusion Complex

2012 ◽  
Vol 424-425 ◽  
pp. 999-1002
Author(s):  
Feng Zhu Liu ◽  
Wei Zong

To study the characterization of ursolic acid (UA) and β- cyclodextrin(β-CD) inclusion complex which prepared by ultra-high pressure method. Inclusion complex of UA /β-CD was prepared at 100MPa and 500MPa. The inclusion complex was characterized by IR spectra, X-ray diffraction, Differential scanning calorimetry and Scanning electron microscope. It was testified that the inclusion complex was formed between β-CD and UA at ultra-high pressure conditions.

2011 ◽  
Vol 403-408 ◽  
pp. 712-716 ◽  
Author(s):  
Wei Zong ◽  
Su Mei Bi

In order to increase the solubility of ursolic acid, the inclusion complexes of ursolic acid with γ-cyclodextrin were prepared by grinding, ultrasonic and stirring methods. The characterizations of the inclusion complexes were proved by x-ray powder diffraction, fourier transform infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. The results confirmed the interactions of ursolic acid with γ-cyclodextrin, indicating the formation of the inclusion complexes. In addition, grinding method is a better way of preparing inclusion complex of ursolic acid with γ-cyclodextrin.


2013 ◽  
Vol 432 ◽  
pp. 413-417 ◽  
Author(s):  
Li Ming Zhang ◽  
Zhi Ying Hu ◽  
Li Hu Yan ◽  
Run Liu Li ◽  
Cheng Wei Cao ◽  
...  

In order to improving the stability and bioavailability of tea polyphenols (TP), the TP/starchinclusion complex(TPSIC) was prepared by adding TP to starch slurry during gelatinization, and its TPreleasing behaviorswas investigated. The formation of inclusion complex was confirmed by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The TPSIC showed a characteristic of V-type crystallinity and a looser gel matrix. The encapsulation increased the stability of TP and generated a good releasing behavior after enzymatic erosion. The lower releasing rate indicated that the prepared inclusion complexes had good retention ability and effectively reduced the releasing rate of TP. The releasing rate of TPSIC increased with the increase of TP concentration.


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4089
Author(s):  
Katarzyna Betlejewska-Kielak ◽  
Elżbieta Bednarek ◽  
Armand Budzianowski ◽  
Katarzyna Michalska ◽  
Jan K. Maurin

Racemic ketoprofen (KP) and β-cyclodextrin (β-CD) powder samples from co-precipitation (1), evaporation (2), and heating-under-reflux (3) were analysed using X-ray techniques and nuclear magnetic resonance (NMR) spectroscopy. On the basis of NMR studies carried out in an aqueous solution, it was found that in the samples obtained by methods 1 and 2, there were large excesses of β-CD in relation to KP, 10 and 75 times, respectively, while the sample obtained by method 3 contained equimolar amounts of β-CD and KP. NMR results indicated that KP/β-CD inclusion complexes were formed and the estimated binding constants were approximately 2400 M−1, showing that KP is quite strongly associated with β-CD. On the other hand, the X-ray single-crystal technique in the solid state revealed that the (S)-KP/β-CD inclusion complex with a stoichiometry of 2:2 was obtained as a result of heating-under-reflux, for which the crystal and molecular structure were examined. Among the methods used for the preparation of the KP/β-CD complex, only method 3 is suitable.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


Author(s):  
S. Louki ◽  
N. Touach ◽  
A. Benzaouak ◽  
V. M. Ortiz-Martínez ◽  
M. J. Salar-García ◽  
...  

This work investigates the photocatalytic activity of new ferroelectric material with formula (Li0.95Cu0.15)Ta0.76Nb0.19O3 (LT76) in a single chamber microbial fuel cell (MFC) and compares its performance with the similar photocatalyst (Li0.95Cu0.15)Ta0.57Nb0.38O3 (LT57). The photocatalysts LT76 and LT57 were synthesized by ceramic route under the same conditions, with the same starting materials. The ratio Ta/Nb was fixed at 4.0 and 1.5 for LT76 and LT57, respectively. These phases were characterized by different techniques including X-ray diffraction (XRD), transmission electronic microscopy (TEM), particle size distribution (PSD), differential scanning calorimetry (DSC), and ultraviolet (UV)–visible (Vis). The new photocatalyst LT76 presents specific surface area of 0.791 m2/g and Curie temperature of 1197 °C. The photocatalytic efficiency of this material is assessed in terms of wastewater treatment and electricity generation by power density and removal rate of chemical oxygen demand (COD) in the presence of a light source. The values of maximum power density and COD removal were 19.77 mW/m3 and 93%, respectively, for LT76.


1998 ◽  
Vol 50 (S9) ◽  
pp. 180-180 ◽  
Author(s):  
Irena Homšek ◽  
Branko Kolarić ◽  
Slavica Ristić ◽  
Ivana Kolarić

Sign in / Sign up

Export Citation Format

Share Document