Model Building of Hydraulic Cylinder Exciting System Controlled by Wave Exciter

2012 ◽  
Vol 433-440 ◽  
pp. 2053-2058
Author(s):  
Zi Ming Kou ◽  
Xiu Ye Wei ◽  
Juan Wu ◽  
Hong Zhen Lian

By analyzing exciting course of hydraulic cylinder exciting system controlled by wave-exciter, the pressure fluctuation law of hydraulic cylinder in exciting process has been gained, and the law presents a cyclical variation. The pressure fluctuation frequency is independently controlled by excitation frequency of wave exciter. And mathematic model of hydraulic cylinder exciting system controlled by wave-exciter, which contains three control parameters, has been built.

2011 ◽  
Vol 204-210 ◽  
pp. 127-130 ◽  
Author(s):  
Chang Jun Li ◽  
Xia Wu ◽  
Wen Long Jia ◽  
Ke Xi Liao

Glass reinforced plastic (GRP) pipeline has good characteristics of anti-corrosion, anti-scaling and it is widely used in the oil transportation pipeline. Analyze the water hammer characteristics of GRP pipeline is essential to ensure the safety operation of the pipeline. The water hammer mathematic model for GRP pipeline is built through combing the general water hammer mathematic model and prosperities of GRP pipeline. The solving method of the model is discussed based on the method of characteristic. Ultimately, the simulation results show the GRP pipeline can reduce the peak pressure and pressure fluctuation frequency as well as increase the low pressure caused by water hammer compared with steel pipeline. The GRP pipeline has a better capability to reduce the harms brought by water hammer than steel pipeline.


2000 ◽  
Author(s):  
Xuanyin Wang

Abstract This paper researches on the hydraulic servo system by using ordinary on-off valves. The mathematic model of an asymmetric hydraulic cylinder servo control system is built, and its characteristic is analysed here. To reduce the static and dynamic characteristic differences between forward and reverse motion of asymmetric cylinder, and improve system’s performance, a self-tuning linear quadratic gaussian optimum controller (SLQG) is designed successful. In the end, an asymmetric hydraulic cylinder servo system of paint robot is researched. The result shows that the above method is effective.


2010 ◽  
Vol 42 ◽  
pp. 219-223
Author(s):  
Liang Wen Wang ◽  
An Sheng Li ◽  
Duan Qin Zhang ◽  
Wei Gang Tang

According to the different fellower structure and general simple trapezoid motion law of cam mechanism, this paper established a mathematic model for the motion of fellower structure of cam mechanism. The design method of motion law of the fellower structure was introduced, and the law of motion transition of fellower system and the related issues with program design were studied. A design system was developed using VB code based fellower structure and general motion laws. And the system could solve the curve of motion law for the fellower system and the eigenvalue of the curve, and finally realize parametric design of motion law for the fellower structure of cam mechanism. And the system could calculate and output the coordinate of cam configuration, and improve the digitized design process of cam parametric. The interface of the designed system is friendly and convenient, and the system could be used in both engineering and teaching.


Author(s):  
Jibing Lan ◽  
Yonghui Xie ◽  
Di Zhang ◽  
Jing Shu

A rectangular bar which just likes a forward-backward facing step was designed to passive control of the Low-Pressure Turbine (LPT) PakB cascade suction surface separation. Large-eddy simulation (LES) was adopted to analyze the separated-transition flows for the PakB cascade with and without the rectangular bar at Re (Reynolds number based on inlet condition and axial chord) of 86,000 and the freestream turbulence intensity of 1%. Computed results of uncontrolled condition agree well with the experimental data of Lake et al.[6, 7]. And the LES results shown that the rectangular bar control device was successful to control the LPT cascade suction surface separation and provides about 10% kinetic loss coefficient reduction from the uncontrolled one. Unsteady flow structures were also investigated in detail. Static pressure fluctuation frequency at six locations, ranging from 0.56Cx to 0.95Cx axial chord location and with a constant wall normal distance y/h = 1.0, was the same to the separation bubble vortex shedding frequency. Unsteady fluctuation velocity was examined too, which confirmed that the separation bubble vortex frequency was the same to the suction surface static pressure fluctuation frequency.


1985 ◽  
Vol 107 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Z. Prucz ◽  
T. T. Soong ◽  
A. Reinhorn

An efficient pulse control method for insuring safety of simple mechanical systems is developed and its sensitivity to the excitation frequency content and to various control parameters is studied. The control algorithm, consisting of applying pulse forces in a feedback fashion, is designed to insure that maximum system response is limited to safe values at all times. It is shown that the proposed algorithm is simple to implement and is efficient in controlling peak response in terms of on-line computation and pulse energy required. The technique is illustrated and analyzed for a single-degree-of-freedom linear system.


2014 ◽  
Vol 8 (1) ◽  
pp. 382-386
Author(s):  
Y. Guo ◽  
Y. P. Jin ◽  
M. Jiang ◽  
B. W. Luo

The positional accuracy of disc storing mechanism for benthic drill is the guarantee of long hole coring in deep sea. Aiming the lack of positional accuracy analysis on disc storing mechanism, the mathematic model of the positional accuracy for disc storing mechanism is presented by using complex vector and matrix analyzing method. The analytical formula of crank rotation positional accuracy is acquired through rotation positional analysis of crank in disc storing mechanism driven by hydraulic cylinder. Adopting numerical nonlinear iteration solution method of Newton-Simpson, the variation rule of rotation positional error for disc storing mechanism to cylinder length is acquired, which supports an important theory, leading to tolerance design for dimensional parameters of disc storing mechanism.


2012 ◽  
Vol 233 ◽  
pp. 172-176
Author(s):  
Zhi Fei Peng ◽  
Rui Bo Yuan ◽  
Jing Luo ◽  
Rong Li

This paper introduces the structure and working principle of the designed copper anode lifting platform. According to the actual working conditions and the structure of the lifting device, hydraulic system of electro-hydraulic proportional synchronous lifting device is designed and its working principle is analyzed. This paper takes the electro-hydraulic synchronization system as a research subject, whose mathematic model is established. To solve the synchronization accuracy of the hydraulic cylinder movement in the lifting process, a model reference adaptive controller is designed which is based on hyperstability theory. Both system simulation models of traditional PID control and adaptive control are established respectively in the software of Matlab/Simulink. Through the simulation result we can learn that adaptive control is batter than the PID control. Two hydraulic cylinders synchronization error is less than 0.02mm.


2013 ◽  
Vol 664 ◽  
pp. 871-877
Author(s):  
Xiao Dong Tan ◽  
Wei Ji ◽  
Zhi Bo Luan

In this paper, we base on the simulation analysis of the electro-hydraulic servo system about dual hydraulic cylinders parallel driving Multi-Stud Tensioning Machine, focus on the dynamic characteristics of a single hydraulic cylinder (asymmetric hydraulic cylinder), make use of Matlab Simulink module to carry on to imitate, and design a PID controller to correct the system. The results of simulation prove correctness of the system mathematic model, and the stability of the system is obviously improved.


2014 ◽  
Vol 952 ◽  
pp. 169-175
Author(s):  
Gui Zhen Liu ◽  
Ying Yu ◽  
Bang Chun Wen

Established the unsteady oil-film force with rub-impact fault of rotor-stator-bearing system mechanical models by using Lagrange equation, Application of numerical analysis to study it, concluded that the rotor system in frequency as the only incentive system control parameters of orbit and bifurcation diagrams; analysis of the nonlinear behavior of the response of the system and the failure mechanism, provide a theoretical basis for the safe operation of the rotor system and fault diagnosis. The results show that, when the excitation frequency as the only control parameters, the system exist periodic motion, quasi periodic motion and chaotic motion etc abundant nonlinear phenomena.


Sign in / Sign up

Export Citation Format

Share Document