Parameterization Structural Design and Three-Dimensional Entity Modeling of Brake by Wire System Based on Pro-E

2012 ◽  
Vol 433-440 ◽  
pp. 5881-5885
Author(s):  
Chang Bao Chu

Parameterization design was applied to actuator structural design and three-dimensional entity modeling of brake by wire system. Based on pro-engineering software environment, motor driving entity model of brake by wire system was established. Motion transformation device, force booster device, cylindrical gear decelerate device were included. According to relative motor parameters and structural function of the equation, structural design of motion transformation device, force booster device and cylindrical gear decelerate device were carried on. Under Pro-E entity modeling platform, three-dimensional entity model of brake by wire system was established.

2005 ◽  
Vol 71 (705) ◽  
pp. 858-865
Author(s):  
Hironobu SAITO ◽  
Tatsuhiro TAMAKI ◽  
Hikaru SHIMIZU ◽  
Y. M. XIE ◽  
Eisuke KITA

Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


2013 ◽  
Vol 796 ◽  
pp. 513-518
Author(s):  
Rong Jin ◽  
Bing Fei Gu ◽  
Guo Lian Liu

In this paper 110 female undergraduates in Soochow University are measured by using 3D non-contact measurement system and manual measurement. 3D point cloud data of human body is taken as research objects by using anti-engineering software, and secondary development of point cloud data is done on the basis of optimizing point cloud data. In accordance with the definition of the human chest width points and other feature points, and in the operability of the three-dimensional point cloud data, the width, thickness, and length dimensions of the curve through the chest width point are measured. Classification of body type is done by choosing the ratio values as classification index which is the ratio between thickness and width of the curve. The generation rules of the chest curve are determined for each type by using linear regression method. Human arm model could be established by the computer automatically. Thereby the individual model of the female upper body mannequin modeling can be improved effectively.


2010 ◽  
Vol 156-157 ◽  
pp. 496-499
Author(s):  
Wen Lei Sun ◽  
Yu Shan Cao ◽  
Wei Sun

This paper took the roller of a new cotton picker as the example, drew its various parts and assemblyed overally in the three-dimensional mapping software environment of UG, imported the models into the virtual reality assembly platform by the interface between UG and VAPlatform, added the virtual hand and carried through the virtual assembly in the virtual scene based on the certain assembly restriction in UG. The paper realized the visualization of the assembly path, offered the foundation for the feasible assembly path, and finally obtained the reasonable assembly process, provided a set of reasonable operation guide for the workers to assemble the cotton pickers.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7489
Author(s):  
Hu Shi ◽  
Boyang Zhang ◽  
Xuesong Mei ◽  
Qichun Song

Robot-assisted minimally invasive surgery (MIS) has received increasing attention, both in the academic field and clinical operation. Master/slave control is the most widely adopted manipulation mode for surgical robots. Thus, sensing the force of the surgical instruments located at the end of the slave manipulator through the main manipulator is critical to the operation. This study mainly addressed the force detection of the surgical instrument and force feedback control of the serial surgical robotic arm. A measurement device was developed to record the tool end force from the slave manipulator. An elastic element with an orthogonal beam structure was designed to sense the strain induced by force interactions. The relationship between the acting force and the output voltage was obtained through experiment, and the three-dimensional force output was decomposed using an extreme learning machine algorithm while considering the nonlinearity. The control of the force from the slave manipulator end was achieved. An impedance control strategy was adopted to restrict the force interaction amplitude. Modeling, simulation, and experimental verification were completed on the serial robotic manipulator platform along with virtual control in the MATLAB/Simulink software environment. The experimental results show that the measured force from the slave manipulator can provide feedback for impedance control with a delay of 0.15 s.


2011 ◽  
Vol 90-93 ◽  
pp. 2521-2527
Author(s):  
Gang Qiang Li ◽  
Yan Yan Zhao ◽  
Yong He Xie

In a typical load condition of wind power equipment Installation ship, using the three-dimensional potential flow theory to prediction the long-term response of wave induced loads. then using the main load control parameters as a basis for the design wave selection, then application of DNV's SESTRA program make the wave-induced directly to the structure to finite element simulation. The results show that the hull structural design can meet the requirements.


Author(s):  
Alexandra Schonning

This paper discusses integration of biomechanical research in the undergraduate mechanical engineering curriculum. The projects presented emphasize the use of computers and computer-aided engineering software. Two different projects are discussed. The first project involves generation of three-dimensional computer models of the bones of the lower limb, and the second project the generation of three-dimensional computer models of the shoulder to be used in developing an implant. Through these projects the students learned specialized computer-aided engineering software tools and also enhanced their communication skills through technical report writing and presenting a paper at a conference.


2019 ◽  
Author(s):  
Michael Thome ◽  
Jens Neugebauer ◽  
Ould el Moctar

Abstract The assessment of design loads acting on Liquefied Natural Gas (LNG) pump tower are widely based on Morison equation. However, the Morison equation lacks consideration of transverse flow, impact loads and the interaction between fluid and structure. Studies dealing with a direct simulation of LNG pump tower loads by means of Computational Fluid Dynamics (CFD), which can cover the aforementioned effects, are currently not available. A comparative numerical study on LNG pump tower loads is presented in this paper focusing on the following two questions: Are impact loads relevant for the structural design of LNG pump towers? In which way does the fluid-structure interaction influence the loads? Numerical simulations of the multiphase problem were conducted using field methods. Firstly, Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations, extended by the Volume of Fluid (VoF) approach were used to simulate the flow inside a three-dimensional LNG tank in model scale without tower structure. The results were used to validate the numerical model against model tests. Motion periods and amplitudes were systematically varied. Velocities and accelerations along the positions of the main structural members of the pump tower were extracted and used as input data for load approximations with the Morison equation. Morison equation, URANS and Delayed Detached Eddy Simulation (DDES) computed tower loads were compared. Time histories as well as statistically processed data were used. Global loads acting on the full (with tower structure) and simplified structure (no tower structure, but using Morison equation) are in the same order of magnitude. However, their time evolution is different, especially at peaks, which is considered significant for the structural design.


1993 ◽  
Vol 20 (4) ◽  
pp. 587-601 ◽  
Author(s):  
Pierre Léger ◽  
Patrick Paultre

Microcomputer finite element analysis of reinforced concrete slab systems can now be routinely performed to produce realistic numerical simulation of three-dimensional structural behaviour. However, an efficient use of this approach requires an automated integration of design and analysis procedures. Guidelines for proper finite element modelling of slab systems are first presented along with simple post-processing algorithms to perform automatically the design or verifications from the analytical results. Numerical applications on simple slab systems subjected to uniform and concentrated loads are then used to illustrate the relative performance between finite element analyses and the equivalent frame method. Key words: microcomputer, reinforced concrete slab, finite element method, structural design.


Sign in / Sign up

Export Citation Format

Share Document