scholarly journals Realization of Force Detection and Feedback Control for Slave Manipulator of Master/Slave Surgical Robot

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7489
Author(s):  
Hu Shi ◽  
Boyang Zhang ◽  
Xuesong Mei ◽  
Qichun Song

Robot-assisted minimally invasive surgery (MIS) has received increasing attention, both in the academic field and clinical operation. Master/slave control is the most widely adopted manipulation mode for surgical robots. Thus, sensing the force of the surgical instruments located at the end of the slave manipulator through the main manipulator is critical to the operation. This study mainly addressed the force detection of the surgical instrument and force feedback control of the serial surgical robotic arm. A measurement device was developed to record the tool end force from the slave manipulator. An elastic element with an orthogonal beam structure was designed to sense the strain induced by force interactions. The relationship between the acting force and the output voltage was obtained through experiment, and the three-dimensional force output was decomposed using an extreme learning machine algorithm while considering the nonlinearity. The control of the force from the slave manipulator end was achieved. An impedance control strategy was adopted to restrict the force interaction amplitude. Modeling, simulation, and experimental verification were completed on the serial robotic manipulator platform along with virtual control in the MATLAB/Simulink software environment. The experimental results show that the measured force from the slave manipulator can provide feedback for impedance control with a delay of 0.15 s.

2021 ◽  
Author(s):  
Thomas Bifano ◽  
Chris Chen ◽  
Huate Li ◽  
Subramanian Sundaram ◽  
lihua lou ◽  
...  

<p>Three-dimensional engineered heart tissues (EHTs) derived from human induced pluripotent stem cells (iPSCs) have become an important resource for both drug toxicity screening and research on heart disease. A key metric of EHT phenotype is the contractile force with which the tissue spontaneously beats. It is well-known that cardiac muscle contractility – its ability to do mechanical work – depends on tissue prestrain (preload) and external resistance (afterload). Objectives: Here, we demonstrate a technique to control both preload and afterload dynamically while monitoring contractile force exerted by EHTs. Methods: We developed an apparatus that uses real-time feedback control to monitor and regulate EHT forces. The system is comprised of a pair of high-speed piezoelectric actuators that can strain the EHT scaffold and a fast optical measurement tool to provide EHT contractile force feedback while monitoring tissue strain. Results: The system was used to regulate the effective stiffness of the scaffold. When controlled to have effectively isometric boundary conditions, EHTs exerted a contractile force that was almost twice as large as that observed under auxotonic conditions. Conclusion: These experimental results demonstrate that EHT contractility can be increased through feedback control to regulate boundary stiffness. Significance: The work advances our understanding of the role that mechanical environment plays in EHT contractility. This could be used to help study or alter EHT phenotype and potentially EHT maturation through controlled mechanical conditioning.</p>


2021 ◽  
Author(s):  
Thomas Bifano ◽  
Chris Chen ◽  
Huate Li ◽  
Subramanian Sundaram ◽  
lihua lou ◽  
...  

<p>Three-dimensional engineered heart tissues (EHTs) derived from human induced pluripotent stem cells (iPSCs) have become an important resource for both drug toxicity screening and research on heart disease. A key metric of EHT phenotype is the contractile force with which the tissue spontaneously beats. It is well-known that cardiac muscle contractility – its ability to do mechanical work – depends on tissue prestrain (preload) and external resistance (afterload). Objectives: Here, we demonstrate a technique to control both preload and afterload dynamically while monitoring contractile force exerted by EHTs. Methods: We developed an apparatus that uses real-time feedback control to monitor and regulate EHT forces. The system is comprised of a pair of high-speed piezoelectric actuators that can strain the EHT scaffold and a fast optical measurement tool to provide EHT contractile force feedback while monitoring tissue strain. Results: The system was used to regulate the effective stiffness of the scaffold. When controlled to have effectively isometric boundary conditions, EHTs exerted a contractile force that was almost twice as large as that observed under auxotonic conditions. Conclusion: These experimental results demonstrate that EHT contractility can be increased through feedback control to regulate boundary stiffness. Significance: The work advances our understanding of the role that mechanical environment plays in EHT contractility. This could be used to help study or alter EHT phenotype and potentially EHT maturation through controlled mechanical conditioning.</p>


2013 ◽  
Vol 133 (8) ◽  
pp. 795-803
Author(s):  
Kazuki Nagase ◽  
Shutaro Yorozu ◽  
Takahiro Kosugi ◽  
Yuki Yokokura ◽  
Seiichiro Katsura

2021 ◽  
Vol 45 (5) ◽  
Author(s):  
Yuri Nagayo ◽  
Toki Saito ◽  
Hiroshi Oyama

AbstractThe surgical education environment has been changing significantly due to restricted work hours, limited resources, and increasing public concern for safety and quality, leading to the evolution of simulation-based training in surgery. Of the various simulators, low-fidelity simulators are widely used to practice surgical skills such as sutures because they are portable, inexpensive, and easy to use without requiring complicated settings. However, since low-fidelity simulators do not offer any teaching information, trainees do self-practice with them, referring to textbooks or videos, which are insufficient to learn open surgical procedures. This study aimed to develop a new suture training system for open surgery that provides trainees with the three-dimensional information of exemplary procedures performed by experts and allows them to observe and imitate the procedures during self-practice. The proposed system consists of a motion capture system of surgical instruments and a three-dimensional replication system of captured procedures on the surgical field. Motion capture of surgical instruments was achieved inexpensively by using cylindrical augmented reality (AR) markers, and replication of captured procedures was realized by visualizing them three-dimensionally at the same position and orientation as captured, using an AR device. For subcuticular interrupted suture, it was confirmed that the proposed system enabled users to observe experts’ procedures from any angle and imitate them by manipulating the actual surgical instruments during self-practice. We expect that this training system will contribute to developing a novel surgical training method that enables trainees to learn surgical skills by themselves in the absence of experts.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Pijush Samui

The main objective of site characterization is the prediction of in situ soil properties at any half-space point at a site based on limited tests. In this study, the Support Vector Machine (SVM) has been used to develop a three dimensional site characterization model for Bangalore, India based on large amount of Standard Penetration Test. SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing ε-insensitive loss function. The database consists of 766 boreholes, with more than 2700 field SPT values () spread over 220 sq km area of Bangalore. The model is applied for corrected () values. The three input variables (, , and , where , , and are the coordinates of the Bangalore) were used for the SVM model. The output of SVM was the data. The results presented in this paper clearly highlight that the SVM is a robust tool for site characterization. In this study, a sensitivity analysis of SVM parameters (σ, , and ε) has been also presented.


2011 ◽  
Vol 403-408 ◽  
pp. 5182-5186
Author(s):  
Sheng Yi Yang ◽  
An Gu ◽  
Meng Li ◽  
Chang Jian Lu

In robotic-assisted heart surgery, the method of canceling the relative motion between the surgical site on the heart and the surgical instruments was introduced in this paper. A whisker sensor was designed for three dimensional position measurement in beating heart surgery. Analytical models were developed according to the classical mechanics of materials, and theoretical formulas were derived for displacement measurement. Feasibility and effectiveness of the method were verified by simulation experiments. We can obtain measurements by loading displacement to the whisker sensor, and draw conclusions by comparing the measurements.


2009 ◽  
Vol 42 (16) ◽  
pp. 431-436 ◽  
Author(s):  
Mai Mishima ◽  
Haruhisa Kawasaki ◽  
Tetsuya Mouri ◽  
Takahiro Endo

Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Conghui Liang ◽  
Hao Gu ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

SUMMARYA mechanical design and dynamics walking simulation of a novel tripod walking robot are presented in this paper. The tripod walking robot consists of three 1-degree-of-freedom (DOF) Chebyshev–Pantograph leg mechanisms with linkage architecture. A balancing mechanism is mounted on the body of the tripod walking robot to adjust its center of gravity (COG) during walking for balancing purpose. A statically stable tripod walking gait is performed by synchronizing the motions of the three leg mechanisms and the balancing mechanism. A three-dimensional model has been elaborated in SolidWorks® engineering software environment for a characterization of a feasible mechanical design. Dynamics simulation has been carried out in the MSC.ADAMS® environment with the aim to characterize and to evaluate the dynamic walking performances of the proposed design with low-cost easy-operation features. Simulation results show that the proposed tripod walking robot with proper input torques, gives limited reaction forces at the linkage joints, and a practical feasible walking ability on a flatten ground.


Sign in / Sign up

Export Citation Format

Share Document