Analysis on Reductive Kinetics of SSI Reduced by Hydrogen

2012 ◽  
Vol 450-451 ◽  
pp. 174-178
Author(s):  
Jun Guo Li ◽  
Shou Zhang Li ◽  
Wei Tian

Spherical sponge iron (SSI) with high activity and intension could be prepared through direct reduction by hydrogen. To optimize the reduction technology, reductive kinetics of SSI was analyzed on the basement of unreacted core model. In the light of the single reaction surface theory, the ratio of internal diffusion resistance fI and chemical reaction resistance fR was calculated according to the weight loss curve of SSI reduction. Under different temperature, both fI and fR increased with the reaction time, especially the radium of unreacted core was small after a period of reaction time. Compared the ratio of fI and fR, it concluded that SSI reduced by hydrogen was controlled by the chemical reaction, combination of chemical reaction and the internal diffusion, the internal diffusion under the temperature being lower than T3, from T3 to T4, more than T5, respectively.

2012 ◽  
Vol 476-478 ◽  
pp. 1454-1458
Author(s):  
Jun Guo Li ◽  
Shou Zhang Li ◽  
Wei Tian

Spherical sponge iron (SSI) with high activity and intension could be prepared through direct reduction by hydrogen. To optimize the reduction technology, kinetic model of SSI reduction was established. The total reaction rate changing with reduction index R was deduced which describing the total reaction rate with effective diffusion coefficient De and chemical reaction rate constant k. According to the weight loss curve of SSI reduction, De and k were calculated. The total reactive rate increased with the increasing of temperature because both De and k increased with the increasing of reaction temperature. Compared De with k, it concluded that SSI reduced by hydrogen was controlled by the chemical reaction, combination of the chemical reaction and the internal diffusion, the internal diffusion when the temperature was lower than T3, from T3 to T4, over T5, respectively.


2020 ◽  
Vol 81 (4) ◽  
pp. 773-780
Author(s):  
Paola Santander ◽  
Estefanía Oyarce ◽  
Julio Sánchez

Abstract The adsorption of methyl orange (MO) in aqueous solution was evaluated using a cationic polymer (Amberlite IRA 402) in batch experiments under different experimental variables such as amount of resin, concentration of MO, optimum interaction time and pH. The maximum adsorption capacity of the resin was 161.3 mg g−1 at pH 7.64 at 55 °C and using a contact time of 300 min, following the kinetics of the pseudo-first-order model in the adsorption process. The infinite solution volume model shows that the adsorption rate is controlled by the film diffusion process. In contrast, the chemical reaction is the decisive step of the adsorption rate when the unreacted core model is applied. A better fit to the Langmuir model was shown for equilibrium adsorption studies. From the thermodynamic study it was observed that the sorption capacity is facilitated when the temperature increases.


2011 ◽  
Vol 239-242 ◽  
pp. 2286-2292 ◽  
Author(s):  
Hai Chuan Wang ◽  
Zhi You Liao ◽  
Yuan Chi Dong ◽  
Shi Jun Wang ◽  
Yun Zhou

The reduction rates of manganese oxide by carbon and SiC was examined by heating MnO2-carbon and MnO2-SiC mixtures in a 7-kW industrial microwave oven. The results show that the rate of the reduction increased with the amount of carbon in MnO2-carbon mixture and with SiC in MnO2-SiC mixture. The rate of the MnO2 reduction by carbon was proportional to the reaction time, and that by SiC was proportional to 2/3 power of the reaction time. The reduction was found to be controlled by chemical reaction. The reaction rate constant of the reduction of MnO2kC increased with increasing the amount of carbon in the mixtures but kSiC decreased with increasing the amount of SiC in the mixtures.


2001 ◽  
Vol 18 (6) ◽  
pp. 831-837 ◽  
Author(s):  
Ho-Jung Ryu ◽  
Dal-Hee Bae ◽  
Keun-Hee Han ◽  
Seung-Yong Lee ◽  
Gyoung-Tae Jin ◽  
...  

2006 ◽  
Vol 258-260 ◽  
pp. 63-67
Author(s):  
V.M. Chumarev ◽  
V.P. Maryevich ◽  
V.A. Shashmurin

Diffusion processes play a dominant part in the macro kinetics of Fe, Ni and Co oxidation by calcium and sodium sulfates. Here, the reaction product forms a compact covering which spatially divides the reagents on the surface in the same way as in the oxidation and sulfidization of metals by oxygen and sulfur. Therefore, it is possible to assume in advance that interaction of metals with calcium and sodium sulfates will be determined not by the actual chemical reaction properly but by the diffusion transport processes.


Holzforschung ◽  
2008 ◽  
Vol 62 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Krishna K. Pandey ◽  
Tapani Vuorinen

Abstract The etherification of phenolic groups has been found to inhibit photodegradation in wood and lignin rich pulps. The precise understanding of kinetics of chemical reaction between lignins or their model compounds and the etherifying agent is the first step for developing a viable modification procedure. In this study, we have investigated the reaction of lignin model compounds (namely, phenol and guaiacol) with propylene oxide in aqueous media. The kinetics of etherification reaction was studied under varying pH conditions in the temperature range 30–60°C. The etherified reaction products were characterized by gas chromatogram-mass spectrum (GC-MS). The extent of etherification of phenols and the rate of chemical reaction was followed by UV-Visible absorption spectroscopy. The reaction between lignin model compounds and propylene oxide was indicated by a rapid reduction in the absorbance accompanied by the development of a new band corresponding to etherified products. The reaction kinetics was investigated at pH ∼12 under the condition of excess concentration of propylene oxide. The reaction followed first order kinetics and rate constants increased linearly with an increase in the temperature and concentration of propylene oxide. The MS fragment data of reaction product support the proposed reaction scheme. The activation energy of the reaction of propylene oxide with phenol and guaiacol, calculated with the Arrhenius equation, was 56.2 kJ mol-1 and 45.4 kJ mol-1, respectively.


2012 ◽  
Vol 610-613 ◽  
pp. 1980-1985 ◽  
Author(s):  
Hong Jian Xu ◽  
Shu Fang Wang ◽  
Wei Guo Pan ◽  
Rui Tang Guo

The limestone-lime washing technology is the most widely used WFGD process, which normally we adopt to control the discharge of SO2 caused by coal’s combustion. Through the research on the oxidation kinetics of sulfite in this paper, it is indicated that macroscopic chemical reaction which responses to rate of sulfite is 1/2. And the results of orthogonal test can be concluded that: to the extent influence of oxidization reaction rate, the influences of temperature is the most significant, and influences of stirred speed is nearly negligible. The optimized operation factors may be shown as that temperature is controlled at 40°C, air ventilation is at 88ml/min,pH is 4.5 and stir speed is 500 r/min.


Author(s):  
Л.Ф. Сафиуллина

В статье рассмотрен вопрос идентифицируемости математической модели кинетики химической реакции. В процессе решения обратной задачи по оценке параметров модели, характеризующих процесс, нередко возникает вопрос неединственности решения. На примере конкретной реакции продемонстрирована необходимость проводить анализ идентифицируемости модели перед проведением численных расчетов по определению параметров модели химической реакции. The identifiability of the mathematical model of the kinetics of a chemical reaction is investigated in the article. In the process of solving the inverse problem of estimating the parameters of the model, the question arises of the non-uniqueness of the solution. On the example of a specific reaction, the need to analyze the identifiability of the model before carrying out numerical calculations to determine the parameters of the reaction model was demonstrated.


2007 ◽  
Vol 40 (6) ◽  
pp. 473-479 ◽  
Author(s):  
Tomoyuki Yoshimi ◽  
Naoki Furukawa ◽  
Kouichi Miura

Sign in / Sign up

Export Citation Format

Share Document