Preparation and Immunological Traits of Monoclonal Antibody against Sarafloxacin

2012 ◽  
Vol 459 ◽  
pp. 54-57
Author(s):  
Guo Ying Fan ◽  
Jin Qing Jiang

Through cell fusion technology, five hybridoma lines of sarafloxacin (SAR), named S1-B2, S2-C6, S2-E7, S3-C5, and S3-E5, were identified and their corresponding mAbs were of the IgG1 isotype with a k light chain. The Kaffs of all mAbs were between 2.8 and 4.6×109 L/mol. The titers and IC50 values of purified ascite fluids were in the range of 0.512–2.56×106 and 0.32–0.48 ng/mL, respectively. The performances of S1-B2 and S2-C6 were more consistent in the stability experiments. Based on the S1-B2 hybridoma, an icELISA method was developed. The dynamic range was from 0.004 to 18 ng/mL, with a detection limit for the assay and IC50 values of 0.002 and 0.32 ng/mL, respectively. Therefore, the establishment of these hybridomas may provide an alternative method for the detection of SAR residues in food-original animals.

2012 ◽  
Vol 461 ◽  
pp. 58-61
Author(s):  
Chao Ying Li ◽  
Jin Qing Jiang

This study aimed to develop a monoclonal antibody based icELISA method for Ractopamine (Rac) residue. For this purpose, mixed anhydride method was employed to synthesize the immunogen of Rac-BSA and 1, 4-butanediol diglycidyl ether was used to prepare the coating antigen of Rac-OVA, thus pursue the heterologous sensitivity. Through cell fusion technology, four Hybridoma named R1-B5, R2-B3, R2-C6, and R4-C8 were screened out, and the Kas of all mAbs were between 2.7 and 4.8×109 L/mol. Based on the R1-B5 mAb, a heterologous icELISA standard curve was developed. The working range was from 0.013 to 33.7 ng/mL, with LOD and IC50 value of 0.007 ng/mL and 0.67 ng/mL, respectively. Therefore, this icELISA can be used for detecting Rac residue in animal products.


1993 ◽  
Vol 70 (02) ◽  
pp. 273-280 ◽  
Author(s):  
Janos Kappelmayer ◽  
Satya P Kunapuli ◽  
Edward G Wyshock ◽  
Robert W Colman

SummaryWe demonstrate that in addition to possessing binding sites for intact factor V (FV), unstimulated peripheral blood monocytes also express activated factor V (FVa) on their surfaces. FVa was identified on the monocyte surface by monoclonal antibody B38 recognizing FVa light chain and by human oligoclonal antibodies H1 (to FVa light chain) and H2 (to FVa heavy chain) using immunofluorescence microscopy and flow cytometry. On Western blots, partially cleaved FV could be identified as a 220 kDa band in lysates of monocytes. In addition to surface expression of FVa, monocytes also contain intracellular FV as detected only after permeabilization by Triton X-100 by monoclonal antibody B10 directed specifically to the Cl domain not present in FVa. We sought to determine whether the presence of FV in peripheral blood monocytes is a result of de novo synthesis.Using in situ hybridization, no FV mRNA could be detected in monocytes, while in parallel control studies, factor V mRNA was detectable in Hep G2 cells and CD18 mRNA in monocytes. In addition, using reverse transcriptase and the polymerase chain reaction, no FV mRNA was detected in mononuclear cells or in U937 cells, but mRNA for factor V was present in Hep G2 cells using the same techniques. These data suggest that FV is present in human monocytes, presumably acquired by binding of plasma FV, and that the presence of this critical coagulation factor is not due to de novo synthesis.


1983 ◽  
Vol 49 (01) ◽  
pp. 024-027 ◽  
Author(s):  
David Vetterlein ◽  
Gary J Calton

SummaryThe preparation of a monoclonal antibody (MAB) against high molecular weight (HMW) urokinase light chain (20,000 Mr) is described. This MAB was immobilized and the resulting immunosorbent was used to isolate urokinase starting with an impure commercial preparation, fresh urine, spent tissue culture media, or E. coli broth without preliminary dialysis or concentration steps. Monospecific antibodies appear to provide a rapid single step method of purifying urokinase, in high yield, from a variety of biological fluids.


1993 ◽  
Vol 69 (03) ◽  
pp. 240-246 ◽  
Author(s):  
Midori Shima ◽  
Dorothea Scandella ◽  
Akira Yoshioka ◽  
Hiroaki Nakai ◽  
Ichiro Tanaka ◽  
...  

SummaryA neutralizing monoclonal antibody, NMC-VIII/5, recognizing the 72 kDa thrombin-proteolytic fragment of factor VIII light chain was obtained. Binding of the antibody to immobilized factor VIII (FVIII) was completely blocked by a light chain-specific human alloantibody, TK, which inhibits FVIII activity. Immunoblotting analysis with a panel of recombinant protein fragments of the C2 domain deleted from the amino-terminal or the carboxy-terminal ends demonstrated binding of NMC-VIII/5 to an epitope located between amino acid residues 2170 and 2327. On the other hand, the epitope of the inhibitor alloantibody, TK, was localized to 64 amino acid residues from 2248 to 2312 using the same recombinant fragments. NMC-VIII/5 and TK inhibited FVIII binding to immobilized von Willebrand factor (vWF). The IC50 of NMC-VIII/5 for the inhibition of binding to vWF was 0.23 μg/ml for IgG and 0.2 μg/ml for F(ab)'2. This concentration was 100-fold lower than that of a monoclonal antibody NMC-VIII/10 which recognizes the amino acid residues 1675 to 1684 within the amino-terminal portion of the light chain. The IC50 of TK was 11 μg/ml by IgG and 6.3 μg/ml by F(ab)'2. Furthermore, NMC-VIII/5 and TK also inhibited FVIII binding to immobilized phosphatidylserine. The IC50 for inhibition of phospholipid binding of NMC-VIII/5 and TK (anti-FVIII inhibitor titer of 300 Bethesda units/mg of IgG) was 10 μg/ml.


Author(s):  
Fanda Meng ◽  
Weisong Huo ◽  
Jie Lian ◽  
Lei Zhang ◽  
Xizeng Shi ◽  
...  

AbstractWe report a microfluidic sandwich immunoassay constructed around a dual-giant magnetoresistance (GMR) sensor array to quantify the heart failure biomarker NT-proBNP in human plasma at the clinically relevant concentration levels between 15 pg/mL and 40 ng/mL. The broad dynamic range was achieved by differential coating of two identical GMR sensors operated in tandem, and combining two standard curves. The detection limit was determined as 5 pg/mL. The assay, involving 53 plasma samples from patients with different cardiovascular diseases, was validated against the Roche Cobas e411 analyzer. The salient features of this system are its wide concentration range, low detection limit, small sample volume requirement (50 μL), and the need for a short measurement time of 15 min, making it a prospective candidate for practical use in point of care analysis.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Kevin Kuhlmann ◽  
Melanie Cieselski ◽  
Julia Schumann

Abstract Background In the present study, two distinct PCR methods were used for the quantification of genetic material and their results were compared: real-time-PCR (qPCR; relative quantification) and droplet digital PCR (ddPCR; absolute quantification). The comparison of the qPCR and the ddPCR was based on a stimulation approach of microvascular endothelial cells in which the effect of a pro-inflammatory milieu on the expression of vasoactive receptors was investigated. Results There was consistency in directions of effects for the majority of genes tested. With regard to the indicated dimension of the effects, the overall picture was more differentiated. It was striking that deviations were more pronounced if the measured values were on the extreme edges of the dynamic range of the test procedures. Conclusions To obtain valid and reliable results, dilution series are recommended, which should be carried out initially. In case of ddPCR the number of copies per µl should be adjusted to the low three-digit range. With regard to qPCR it is essential that the stability and reliability of the reference genes used is guaranteed. Here, ddPCR offers the advantage that housekeeping genes are not required. Furthermore, an absolute quantification of the sample can be easily performed by means of ddPCR. Before using ddPCR, however, care should be taken to optimize the experimental conditions. Strict indications for this methodology should also be made with regard to economic and timing factors.


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 159
Author(s):  
Satit Rodphukdeekul ◽  
Miyuki Tabata ◽  
Chindanai Ratanaporncharoen ◽  
Yasuo Takeuchi ◽  
Pakpum Somboon ◽  
...  

Periodontal disease is an inflammatory disorder that is triggered by bacterial plaque and causes the destruction of the tooth-supporting tissues leading to tooth loss. Several bacteria species, including Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, are considered to be associated with severe periodontal conditions. In this study, we demonstrated a quartz crystal microbalance (QCM) immunoassay for quantitative assessment of the periodontal bacteria, A. actinomycetemcomitans. An immunosensor was constructed using a self-assembled monolayer of 11-mercaptoundecanoic acid (11-MUA) on the gold surface of a QCM chip. The 11-MUA layer was evaluated using a cyclic voltammetry technique to determine its mass and packing density. Next, a monoclonal antibody was covalently linked to 11-MUA using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide to act as the biorecognition element. The specificity of the monoclonal antibody was confirmed by an enzyme-linked immunosorbent assay. A calibration curve, for the relationship between the frequency shifts and number of bacteria, was used to calculate the number of A. actinomycetemcomitans bacteria in a test sample. Based on a regression equation, the lower detection limit was 800 cells, with a dynamic range up to 2.32 × 106 cells. Thus, the QCM biosensor in this study provides a sensitive and label-free method for quantitative analysis of periodontal bacteria. The method can be used in various biosensing assays for practical application and routine detection of periodontitis pathogens.


1990 ◽  
Vol 117 (1-2) ◽  
pp. 62-67 ◽  
Author(s):  
Fuyuki Kametani ◽  
Kikuko Tanaka ◽  
Maroto Sato ◽  
Seiichi Haga ◽  
Takashi Saitoh ◽  
...  

Biochemistry ◽  
2000 ◽  
Vol 39 (21) ◽  
pp. 6459-6465 ◽  
Author(s):  
Perumal Thiagarajan ◽  
Robert Dannenbring ◽  
Kinji Matsuura ◽  
Alfonso Tramontano ◽  
Gennady Gololobov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document