The Application Research of the Matrix in Multi-Parameter Measurement FBGs

2012 ◽  
Vol 461 ◽  
pp. 702-706
Author(s):  
Xiao Xia Wang ◽  
Chun Ying Wu ◽  
Win Lin Wang

The sensitivity of the FBG sensor based on multi-parameter measurement was established and determined by the matrix theory. The condition number of matrix was proposed to deduced the relationship among the measurement multi-parameters of the coated FBGs. The ill-conditioned matrix parameters can be removed, and the relationship between the FBGs sensitivities and many attribute parameters of the coated-FBG was found. As indicated by the experiment, when measure the temperature and the pressure at the same time, the sensitivities of FBG is higher by coated with different thickness of copper,and the second radius is less than 0.4mm,and the FBGs sensitivities can be improved to 5~10 times.

Author(s):  
Grigori Olshanski

This article discusses the relationship between random matrices and maps, i.e. graphs drawn on surfaces, with particular emphasis on the one-matrix model and how it can be used to solve a map enumeration problem. It first provides an overview of maps and related objects, recalling the basic definitions related to graphs and defining maps as graphs embedded into surfaces before considering a coding of maps by pairs of permutations. It then examines the connection between matrix integrals and maps, focusing on the Hermitian one-matrix model with a polynomial potential and how the formal expansion of its free energy around a Gaussian point (quadratic potential) can be represented by diagrams identifiable with maps. The article also illustrates how the solution of the map enumeration problem can be deduced by means of random matrix theory (RMT). Finally, it explains how the matrix model result can be translated into a bijective proof.


1992 ◽  
Vol 23 (1) ◽  
pp. 13-26 ◽  
Author(s):  
W. H. Hendershot ◽  
L. Mendes ◽  
H. Lalande ◽  
F. Courchesne ◽  
S. Savoie

In order to determine how water flowpath controls stream chemistry, we studied both soil and stream water during spring snowmelt, 1985. Soil solution concentrations of base cations were relatively constant over time indicating that cation exchange was controlling cation concentrations. Similarly SO4 adsorption-desorption or precipitation-dissolution reactions with the matrix were controlling its concentrations. On the other hand, NO3 appeared to be controlled by uptake by plants or microorganisms or by denitrification since their concentrations in the soil fell abruptly as snowmelt proceeded. Dissolved Al and pH varied vertically in the soil profile and their pattern in the stream indicated clearly the importance of water flowpath on stream chemistry. Although Al increased as pH decreased, the relationship does not appear to be controlled by gibbsite. The best fit of calculated dissolved inorganic Al was obtained using AlOHSO4 with a solubility less than that of pure crystalline jurbanite.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Wenjun Hu ◽  
Gang Zhang ◽  
Zhongjun Ma ◽  
Binbin Wu

The multiagent system has the advantages of simple structure, strong function, and cost saving, which has received wide attention from different fields. Consensus is the most basic problem in multiagent systems. In this paper, firstly, the problem of partial component consensus in the first-order linear discrete-time multiagent systems with the directed network topology is discussed. Via designing an appropriate pinning control protocol, the corresponding error system is analyzed by using the matrix theory and the partial stability theory. Secondly, a sufficient condition is given to realize partial component consensus in multiagent systems. Finally, the numerical simulations are given to illustrate the theoretical results.


1998 ◽  
Vol 25 (1) ◽  
pp. 81-86 ◽  
Author(s):  
N Hearn ◽  
J Aiello

Experimental work on prismatic concrete specimens was conducted to determine the relationship between mechanical restraint and the rate of corrosion. The current together with the changes in strain of the confining frame were monitored during the accelerated corrosion tests. The effect of mix design and cracking on the corrosion rates was also investigated. The results show that one-dimensional mechanical restraint retards the corrosion process, as indicated by the reduction in the steel loss. Improved quality of the matrix, with and without cracking, reduces the rate of steel loss. In the inferior quality concrete, the effect of cracking on the corrosion rate is minimal.Key words: corrosion, concrete, repair.


Author(s):  
Irzam Sarfraz ◽  
Muhammad Asif ◽  
Joshua D Campbell

Abstract Motivation R Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for storing one or more matrix-like assays along with associated row and column data. These objects have been used to facilitate the storage and analysis of high-throughput genomic data generated from technologies such as single-cell RNA sequencing. One common computational task in many genomics analysis workflows is to perform subsetting of the data matrix before applying down-stream analytical methods. For example, one may need to subset the columns of the assay matrix to exclude poor-quality samples or subset the rows of the matrix to select the most variable features. Traditionally, a second object is created that contains the desired subset of assay from the original object. However, this approach is inefficient as it requires the creation of an additional object containing a copy of the original assay and leads to challenges with data provenance. Results To overcome these challenges, we developed an R package called ExperimentSubset, which is a data container that implements classes for efficient storage and streamlined retrieval of assays that have been subsetted by rows and/or columns. These classes are able to inherently provide data provenance by maintaining the relationship between the subsetted and parent assays. We demonstrate the utility of this package on a single-cell RNA-seq dataset by storing and retrieving subsets at different stages of the analysis while maintaining a lower memory footprint. Overall, the ExperimentSubset is a flexible container for the efficient management of subsets. Availability and implementation ExperimentSubset package is available at Bioconductor: https://bioconductor.org/packages/ExperimentSubset/ and Github: https://github.com/campbio/ExperimentSubset. Supplementary information Supplementary data are available at Bioinformatics online.


1998 ◽  
Vol 13 (34) ◽  
pp. 2731-2742 ◽  
Author(s):  
YUTAKA MATSUO

We give a reinterpretation of the matrix theory discussed by Moore, Nekrasov and Shatashivili (MNS) in terms of the second quantized operators which describes the homology class of the Hilbert scheme of points on surfaces. It naturally relates the contribution from each pole to the inner product of orthogonal basis of free boson Fock space. These bases can be related to the eigenfunctions of Calogero–Sutherland (CS) equation and the deformation parameter of MNS is identified with coupling of CS system. We discuss the structure of Virasoro symmetry in this model.


2014 ◽  
Vol 04 (04) ◽  
pp. 1450035 ◽  
Author(s):  
Lin Zhang ◽  
Patrick Bass ◽  
Zhi-Min Dang ◽  
Z.-Y. Cheng

The equation ε eff ∝ (ϕc - ϕ)-s which shows the relationship between effective dielectric constant (εeff) and the filler concentration (φ), is widely used to determine the percolation behavior and obtain parameters, such as percolation threshold φc and the power constant s in conductor–dielectric composites (CDCs). Six different systems of CDCs were used to check the expression by fitting experimental results. It is found that the equation can fit the experimental results at any frequency. However, it is found that the fitting constants do not reflect the real percolation behavior of the composites. It is found that the dielectric constant is strongly dependent on the frequency, which is mainly due to the fact that the frequency dependence of the dielectric constant for the composites close to φc is almost independent of the matrix.


Author(s):  
S. A. Bortz

Experiments have been performed which indicate the potential of metal-fiber reinforced-ceramic matrix composites for use as a high temperature structural matrix. The results of this work reveal that metal-fiber reinforced ceramics obey compostie theory, and that after cracks occur in the matrix, a pseudo-ductility can be introduced into the composite. This toughness can be predicted from equations of work required to pull the fibers through the matrix. The relationship between strength, toughness, and crack depths, are dependent on the inter-facial bond between the fibers and matrix as well as fiber diameter and length. Based on the results of these experiments, multicomponent materials with superior resistance to failure from oxidation, thermal shock, and high mechanical stresses in air above 2400 F can be postulated. These materials have potential for use as gas turbine engine vanes.


Author(s):  
F. Vos ◽  
L. Delaey ◽  
M. De Bonte ◽  
L. Froyen

Abstract Results are presented of a project analysing the relationship between the production parameters of plasma sprayed self-lubricating Cr2O3-CaF2 coatings and their structural, wear and lubricating properties. The production method consists of a preparation step where a powder blend of the matrix material (Cr203) and solid lubricant (CaF2) is agglomerated, followed by atmospheric plasma spraying (APS) of the agglomerates. Selection of the most appropriate agglomeration and plasma spray parameters as well as the microstructure of the coatings will be discussed.


Sign in / Sign up

Export Citation Format

Share Document