Green Synthesis of Semi-IPN Hydrogel-Silver Nanocomposites by a Biotemplate Redox Technique at Room Temperature

2012 ◽  
Vol 468-471 ◽  
pp. 1974-1977
Author(s):  
Wen Wu ◽  
Dong Sheng Wang

Semi-IPN hydrogels in which silk sericin (SS) chains were physically dispersed throughout dextran (Dex) gel networks were synthesized. Highly stable distributed silver nanoparticles have been prepared using these semi-IPN hydrogels as a carrier via in situ reduction of silver nitrate without the addition of any reducing agent. The resultant semi-IPN hydrogel-silver nanocomposites were characterized by X-ray diffraction (XRD). And the swelling behavior of the hydrogles was also studied.

2011 ◽  
Vol 415-417 ◽  
pp. 487-490 ◽  
Author(s):  
Jia Li Ding ◽  
Wen Wu

Green synthesis of silver nanoparticles (AgNPs) using the silk sericin (SS) solution by in situ reduction at room temperature is reported. The effect of pH on the reduction reaction is studied by UV-Vis spectroscopy. The structure of the sericin-based silver nanoparticles is characterized by TEM. According to the TEM images, the average size of the silver nanoparticles is about 16 nm. The silver nanoparticles are highly dispersed and stable in silk sericin solution for monthes.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012034
Author(s):  
G Kanthimathi ◽  
O Senthilkumar ◽  
C Sankar ◽  
B.S. Prathibha ◽  
S.M. Senthil Kumar

Abstract Silver nanoparticles were prepared by green synthesis, which is an eco-friendly and inexpensive method. The synthesis was carried out using Vitex Negundo leaf extract at room temperature. The nanoparticles were encapsulated with Poly Vinyl Alcohol (PVA) matrix to avoid agglomeration. The formation of silver nanoparticles was confirmed by X-ray Diffraction (XRD). The morphology of the nanoparticles was investigated by scanning electron microscope (SEM). Energy Dispersive X-ray Spectrum (EDX) confirmed the presence of elemental Ag. Adsorption experiments confirmed the removal of toxic cadmium and chromium present in the industrial effluents as analysed by atomic absorption spectroscopy. The silver nanoparticles showed maximum adsorption efficiency for chromium compared to cadmium.


Author(s):  
Md. Abdullah Al Masud ◽  
Hamid Shaikh ◽  
Md. Shamsul Alam ◽  
M. Minnatul Karim ◽  
M. Abdul Momin ◽  
...  

Abstract Background The green synthesis strategy of metallic nanoparticles (NPs) has become popular due to being environmentally friendly. Stable silver nanoparticles (AgNPs) have been synthesized by natural products such as starch, soy protein, various extract of leaves, barks, and roots functioning both as reducing and stabilizing agents. Likewise, silk sericin (SS) is a globular protein discarded in the silk factory might be used for NP synthesis. In this research, we focus on the green synthesis and stabilization of AgNPs by SS as well as assessment of their antibacterial activities against some drug-resistant pathogen. Results SS was extracted from Bombyx mori silkworm cocoons in an aqueous medium. 17 w/w% of dry sericin powder with respect to the cocoon’s weight was obtained by freeze-drying. Furthermore, AgNPs conjugated to sericin, i.e., SS-capped silver nanoparticles (SS-AgNPs) were synthesized by easy, cost-effective, and environment-friendly methods. The synthesized SS-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction measurement. It has been found from the absorbance of UV-visible spectroscopy that a higher percent of SS-AgNPs was obtained at a higher concentration of silver nitrate solution. FTIR-ATR spectra showed that the carboxylate groups obtained from silk sericin act as a reducing agent for the synthesis of silver nanoparticles, while NH2+ and COO− act as a stabilizer of AgNPs. The X-ray diffractogram of SS-AgNPs was quite different from AgNO3 and sericin due to a change in the crystal structure. The diameter of AgNPs was around 20–70 nm observed using TEM. The synthesized SS-AgNPs exhibited strong antibacterial activity against multidrug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 20μg/mL. Conclusions This study encourages the use of Bombyx mori for the ecofriendly synthesis of SS-AgNPs to control multidrug-resistant microorganisms.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


2016 ◽  
Vol 850 ◽  
pp. 191-196 ◽  
Author(s):  
Wei Wang ◽  
Cun Lei Zou ◽  
Ren Geng Li ◽  
Wen Wen ◽  
Hui Jun Kang ◽  
...  

In situ synchrotron X-ray diffraction was used to study a deformed Cu-0.88 Fe-0.24 P alloy during heating process. The measurements were performed at room temperature and also at high temperatures up to 893 K in order to determine the recovery, ageing and recrystallization process. With the increase of temperature, the angles of copper matrix peaks moved left and the FWHM (full width at half maximum) decreased slightly. Fe3P precipitates were first detected at 533 K, reached the maximum at 673 K, and re-dissolved into matrix at 853 K. A dramatic decrease in FWHM was observed accompanied by the precipitation of Fe3P phases, indicating the reduction of lattice distortion of copper matrix.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3920
Author(s):  
Martin Weber ◽  
Gábor Balázs ◽  
Alexander V. Virovets ◽  
Eugenia Peresypkina ◽  
Manfred Scheer

By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A]− = [OTf]− = [O3SCF3]−, [PF6]−), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}4(µ4,η1:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.


2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.


2016 ◽  
Vol 15 (05n06) ◽  
pp. 1660001 ◽  
Author(s):  
V. P. Manjamadha ◽  
Karuppan Muthukumar

The current work elucidates the utilization of biowaste as a valuable reducing agent for the synthesis of silver nanoparticles. In this study, the wastewater generated during the alkaline pretreatment of lignocellulosic wastes (APLW) was used as a bioreductant to reduce silver nitrate under room temperature. Synthesis of stable silver nanoparticles (AgNPs) was achieved rapidly on addition of APLW into the silver nitrate solution (1[Formula: see text]mM). The morphological characterization of AgNPs was performed using field emission scanning electron microscopy (FESEM). The micrograph clearly depicted the presence of spherical AgNPs. The presence of elemental silver along with biomoilties was determined using energy dispersive X-ray spectroscopy (EDAX) analysis. The X-ray diffraction (XRD) study proved the crystalline form of stable AgNPs. The AgNPs exhibited excellent antibacterial performance against Gram negative organism. The immediate bioreduction of silver ions using APLW was well illustrated in the present study. Thus, APLW serve as an alternative source for reducing agents instead of utilizing valuable medicinal plants for nanoparticles synthesis.


2020 ◽  
pp. 152808372092473 ◽  
Author(s):  
Suchart Siengchin ◽  
Pawinee Boonyasopon ◽  
Vajja Sadanand ◽  
Anumakonda Varada Rajulu

In the present work, nanocomposite cellulose fabrics with in situ generated silver nanoparticles were prepared by bioreduction method employing aqueous dispersion of low-cost natural turmeric powder as a reducing agent and different concentrated aqueous AgNO3 as source solutions. The prepared nanocomposite cellulose fabrics were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and antibacterial tests. The nanocomposite cellulose fabrics had roughly spherical silver nanoparticles in the size range of 41–130 nm with an overall average of 78 nm. The X-ray analysis indicated the generation of both silver nanoparticles and Ag2O nanoparticles in the nanocomposite cellulose fabrics. The nanocomposite cellulose fabrics retained the generated AgNPs even after repeated detergent washings. The prepared nanocomposite cellulose fabrics exhibited excellent antibacterial activity against both the Gram-negative and Gram-positive bacteria and hence can be considered as antibacterial hospital-bed materials, apparels, etc.


2014 ◽  
Vol 1645 ◽  
Author(s):  
Romain VAUCHY ◽  
Renaud.C. BELIN ◽  
Anne-Charlotte ROBISSON ◽  
Fiqiri HODAJ

ABSTRACTUranium-plutonium mixed oxides incorporating high amounts of plutonium are considered for future nuclear reactors. For plutonium content higher than 20%, a phase separation occurs, depending on the temperature and on the oxygen stoichiometry. This phase separation phenomenon is still not precisely described, especially at high plutonium content. Here, using an original in situ fast X-ray diffraction device dedicated to radioactive materials, we evidenced a phase separation occurring during rapid cooling from 1773 K to room temperature at the rate of 0.05 and 2 K per second for a (U0.55Pu0.45)O2-x compound under a reducing atmosphere. The results show that the cooling rate does not impact the lattice parameters of the obtained phases at room temperature but their fraction. In addition to their obvious fundamental interest, these results are of utmost importance in the prospect of using uranium-plutonium mixed oxides with high plutonium content as nuclear fuels.


Sign in / Sign up

Export Citation Format

Share Document