Nanocomposite cellulose fabrics with in situ generated silver nanoparticles by bioreduction method

2020 ◽  
pp. 152808372092473 ◽  
Author(s):  
Suchart Siengchin ◽  
Pawinee Boonyasopon ◽  
Vajja Sadanand ◽  
Anumakonda Varada Rajulu

In the present work, nanocomposite cellulose fabrics with in situ generated silver nanoparticles were prepared by bioreduction method employing aqueous dispersion of low-cost natural turmeric powder as a reducing agent and different concentrated aqueous AgNO3 as source solutions. The prepared nanocomposite cellulose fabrics were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and antibacterial tests. The nanocomposite cellulose fabrics had roughly spherical silver nanoparticles in the size range of 41–130 nm with an overall average of 78 nm. The X-ray analysis indicated the generation of both silver nanoparticles and Ag2O nanoparticles in the nanocomposite cellulose fabrics. The nanocomposite cellulose fabrics retained the generated AgNPs even after repeated detergent washings. The prepared nanocomposite cellulose fabrics exhibited excellent antibacterial activity against both the Gram-negative and Gram-positive bacteria and hence can be considered as antibacterial hospital-bed materials, apparels, etc.

2012 ◽  
Vol 468-471 ◽  
pp. 1974-1977
Author(s):  
Wen Wu ◽  
Dong Sheng Wang

Semi-IPN hydrogels in which silk sericin (SS) chains were physically dispersed throughout dextran (Dex) gel networks were synthesized. Highly stable distributed silver nanoparticles have been prepared using these semi-IPN hydrogels as a carrier via in situ reduction of silver nitrate without the addition of any reducing agent. The resultant semi-IPN hydrogel-silver nanocomposites were characterized by X-ray diffraction (XRD). And the swelling behavior of the hydrogles was also studied.


2018 ◽  
Vol 13 ◽  
pp. 117739011878287 ◽  
Author(s):  
Sitaramanjaneya Reddy Guntur ◽  
NS Sampath Kumar ◽  
Manasa M Hegde ◽  
Vijaya R Dirisala

The aim of this study was to perform green synthesis of silver nanoparticles (AgNPs) from the leaf extract of Desmostachya bipinnata (Dharba), a medicinally important herb which is widely used across India. Synthesized AgNPs were analyzed by UV-Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDAX). The results have confirmed that green synthesis of AgNPs leads to the fabrication of sphere-shaped particles with a diameter of 53 nm. Furthermore, these AgNPs were subjected to antioxidant and antimicrobial studies against gram-negative and gram-positive bacteria, where AgNPs at a concentration of 20 mg/mL showed highest zone of inhibition. Synthesized AgNPs were evaluated for their antioxidant activity by 1, 1-diphenyl-2-picryl hydrazyl radical (DPPH), H2O2, and superoxide inhibiting assays; increasing concentration has showed increase in scavenging ability. Cell toxicity was assessed on HepG2 cell lines, and synthesized nanoparticles at a concentration of 128 μg/mL produced significant reduction in viability of Hep cells ( P < .05). The availability of Dharba throughout the year and the eco-friendly approach in the synthesis of AgNPs coupled with bioactivity has demonstrated its potential as a novel biomaterial which can be used for various biomedical applications.


1981 ◽  
Vol 61 (2) ◽  
pp. 261-272 ◽  
Author(s):  
A. R. MERMUT ◽  
R. J. ST. ARNAUD

Calcitic plasmic fabric, grain calcans, neocalcitans and carbonatic glaebules with diffuse boundary were studied in situ, in soils by electron probe and SEM analyses. The occurrence of pedogenic magnesium-bearing calcite, previously detected by a shift of X-ray diffraction spacing on bulk samples, was verified by electron probes analyses on purely pedogenic carbonatic sites. This made it possible to understand further the nature of carbonates and to differentiate pure calcite from magnesium-bearing calcite. Common types of microcrystalline pedogenic carbonates included elongated, equidimensional, rod-shaped, and layered crystals. Equidimensional crystals were common in calcite, whereas elongated and rod types occurring sometimes as bundles of coalescing fibres were found to be magnesium calcite. Most visible pedogenic carbonate crystals in the soils studies had a diameter of 0.3–1.0 μm. This size range may be important in establishing relative levels of secondary carbonates in soils. Phosphorus values for studied features were higher than in the entire soil and arc evidence of precipitation of this element with pedogenic carbonates.


2008 ◽  
Vol 587-588 ◽  
pp. 921-925 ◽  
Author(s):  
Sofia F. Marques ◽  
Raquel A. Silva ◽  
Jose Brito Correia ◽  
Nobumitsu Shohoji ◽  
Carmen M. Rangel

FeTi intermetallic powders are very promising media for reversible hydrogen storage. However, difficult activation treatments including annealing at elevated temperatures in high pressure H2 gas atmosphere are mandatory. In the present work nanostructured FeTi powders were produced and activated in situ at room temperature using mechanical alloying/milling (MA/MM) of pure metallic constituents, Fe and Ti, added with sodium borohydride. The resultant powders, FeTiHx, already H2 pre-charged, absorbed a significant amount of H2 but require optimization for reversible absorption/desorption. This system has one of the highest volumetric storage capacities and can be produced at low cost. Several parameters of the as-milled powders were controlled. The phase constitution of the reaction products was characterized by X-ray diffraction and scanning electron microscopy and the absorption isotherms of the activated powders were determined.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Priyanka Singh ◽  
Yeon Ju Kim ◽  
Hina Singh ◽  
Ramya Mathiyalagan ◽  
Chao Wang ◽  
...  

The strainBhargavaea indicaDC1 isolated from four-year-oldP. ginsengrhizospheric soil was used to perform rapid and extracellular biosynthesis of anisotropic silver nanoparticles. The ultraviolet-visible (UV-vis) spectra of the reaction mixture containing silver nanoparticles showed a peak at 460 nm, corresponding to the surface plasmon absorbance of silver nanoparticles. Field-emission transmission electron microscopy (FE-TEM) structural characterization revealed the nanobar, pentagon, spherical, icosahedron, hexagonal, truncated triangle, and triangular nanoparticles, with the size range from 30 to 100 nm. The energy-dispersive X-ray (EDX) analysis and elemental mapping results also confirmed that the silver was the predominant component of isolated nanoparticles. The X-ray diffraction (XRD) results correspond to the purity of silver nanoparticles and dynamic light scattering (DLS) result indicated that the average diameter of particles was 111.6 nm. In addition, enhancement in antimicrobial activity of commercial antibiotics was observed against various pathogenic microorganisms such asVibrio parahaemolyticus, Salmonella enterica, Staphylococcus aureus, Bacillus anthracis, Bacillus cereus, Escherichia coli, andCandida albicans.


2005 ◽  
Vol 86 (15) ◽  
pp. 151915 ◽  
Author(s):  
Jinlian Hu ◽  
Weiping Cai ◽  
Cuncheng Li ◽  
Yanjie Gan ◽  
Li Chen

2020 ◽  
Vol 84 (3) ◽  
pp. 420-434
Author(s):  
Tingting Yue ◽  
Shu Chen ◽  
Jing Liu

AbstractArsenopyrite (FeAsS) and realgar (As4S4) are two common arsenic minerals that often cause serious environmental issues. Centralised treatment of arsenic-containing tailings can reduce land occupation and save management costs. The current work examined the remediation schemes of tailings from Hunan Province, China, where by different tailings containing arsenopyrite and realgar were blended with exogenous slag zero valence iron (ZVI). Introducing Fe-oxidising bacteria (Acidithiobacillus ferrooxidans) recreates a biologically oxidative environment. All bioleaching experiments were done over three stages, each for 7 days and the solid phase of all tests was characterised by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and selective extraction analyses. The results showed that the mixture group reduced arsenic release by 72.9–74.7% compared with the control group. The addition of 0.2 g ZVI clearly decreased arsenic release, and the addition of 4.0 g ZVI led to the lowest arsenic release among all tests. The decrease of arsenic released from the tailings was due to the adsorption and uptake of arsenic by secondary iron-containing minerals and Fe–As(V) secondary mineralisation. The addition of large amounts of ZVI reduced the arsenic detected in the amorphous Fe precipitates. Therefore, a low cost and integrated strategy to reduce arsenic release from tailings is to mix two typical tailings and apply exogenous slag ZVI, which can apply to the in situ remediation of two kinds or more arsenic-containing tailings.


2010 ◽  
Vol 297-301 ◽  
pp. 52-56 ◽  
Author(s):  
E. Çakır ◽  
Celaletdin Ergun ◽  
Filiz Çinar Şahin ◽  
İ. Erden

In the present study, a method based on sulfuric acid dehydration of sugar was developed to synthesis a precursor material, which can yield B4C/ TiB2 composites at much lower temperatures compared to traditional carbothermal methods. The precursor material for pure B4C and B4C / TiB2 composites were heat treated at 1650oC under Ar and Ar+H2 atmosphere. Then the samples were characterized by X-ray diffraction (XRD) and crystallized B4C and B4C / TiB2 composites can be obtained at 1650oC


2019 ◽  
Vol 9 (2) ◽  
pp. 3915-3917
Author(s):  
S. Akhtar ◽  
Z. Farid ◽  
H. Ahmed ◽  
S. A. Khan ◽  
Z. N. Khan

Silver (Ag) nanoparticles (NPs) are synthesized and characterized by a low-cost chemical reduction method. Silver nanoparticles (Ag NPs) have pre-occupied the consideration of the scientific community due to their wide range of functions, utility and industrial applications, particularly in the fields of sensing technologies and medicine (particularly their efficiency against microbes, the ability of healing the wound and anti-inflammatory properties). Ag NPs are synthesized by a low-cost fabrication method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray diffraction (EDX) and photometry techniques are used in this work to identify their nature and potentiality for diverse applications in sensing technologies.


Sign in / Sign up

Export Citation Format

Share Document