Research on the Roughness Model of Aspheric Surface with Parallel Grinding Method

2012 ◽  
Vol 472-475 ◽  
pp. 2338-2343
Author(s):  
L.J Li ◽  
W.T Bai ◽  
W Sun ◽  
Fei Hu Zhang

This paper deals with the roughness forming mechanics of aspheric surface, and based on the subsequent abrasive blade theory, which will form the final ground surface, the mathematical model of maximal valley height of ground surface during aspheric parallel grinding was established. Through simulation study, the influences of grain size, the speed of wheel and workpieces on the aspheric surface roughness were analyzed, and furthermore, through test, the proportional relation between the maximal valley height and the roughness was found.

2010 ◽  
Vol 126-128 ◽  
pp. 579-584 ◽  
Author(s):  
Akihiko Kubo ◽  
Junichi Tamaki ◽  
A.M.M. Sharif Ullah

Two grinding methods, parallel grinding and cross grinding, were applied to the horizontal-axis-type rotary surface grinding of silicon and tungsten carbide. It was found that the cross grinding method results in better ground surface roughness than parallel grinding for the silicon wafer and that an isotropic ground surface topography is achieved for both silicon and tungsten carbide by cross grinding.


2011 ◽  
Vol 325 ◽  
pp. 542-547
Author(s):  
Qiu Sheng Yan ◽  
Jie Wen Yan ◽  
Jia Bin Lu ◽  
Wei Qiang Gao ◽  
Min Li

A new planarization grinding method based on the cluster magnetorheological (MR) effect is presented to grind optical glass in this paper. Some process experiments were conducted to reveal the influence of the species and granularity and content of the abrasive materials in the MR fluid on the machining effect, furthermore, the machining characteristic of grinded surface was studied. The results indicate that the abrasive influences definitively on machining effect of this planarization grinding method based on the cluster MR-effect. Under the certain experiment condition, with the content of the abrasive 10% and grain size 800# of SiC, best machining effect can be achieved. The difference species of abrasive results in various machining effects. As for the removal rate of K9 optical glass: abrasive CeO2 is the best, the Al2O3 is the second and the SiC is the worst. While the surface roughness: abrasive SiC is the lowest,the Al2O3 is the second and CeO2 is the highest.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1343 ◽  
Author(s):  
Tudor Deaconescu ◽  
Andrea Deaconescu

Lapping is a finishing process where loose abrasive grains contained in a slurry are pressed against a workpiece to reduce its surface roughness. To perform a lapping operation, the user needs to set the values of the respective lapping conditions (e.g., pressure, depth of cut, the rotational speed of the pressing lap plate, and alike) based on some material properties of the workpiece, abrasive grains, and slurry, as well as on the desired surface roughness. Therefore, a mathematical model is needed that establishes the relationships among the abovementioned parameters. The mathematical model can be used to develop a lapping operation optimization system, as well. To this date, such a model and system are not available mainly because the relationships among lapping conditions, material properties of abrasive grains and slurry, and surface roughness are difficult to establish. This study solves this problem. It presents a mathematical model establishing the required relationships. It also presents a system developed based on the mathematical model. In addition, the efficacy of the system is also shown using a case study. This study thus helps systematize lapping operations in regard to real-world applications.


2007 ◽  
Vol 329 ◽  
pp. 27-32 ◽  
Author(s):  
Seung Yub Baek ◽  
Jung Hyung Lee ◽  
Eun Sang Lee ◽  
H.D. Lee

To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with the mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and with the spherical lens of BK7. The optimization of grinding conditions with respect to ground surface roughness and profiles accuracy is investigated by design of experiments.


2010 ◽  
Vol 160-162 ◽  
pp. 1680-1684
Author(s):  
Xing Jun Gao ◽  
Qing Liu ◽  
Ping Zou ◽  
Jian Song ◽  
Ping Li

The fundamental principle of the twist drill conical grinding method was introduced. The mathematical model of the twist drill was established. Mathematical model to establish drill bit is the geometric design, manufacture, cutting analysis and modeling on the basis of the drilling process. According to the twist drill grinding principle, using Pro/E the three-dimensional modeling of the twist drill was completed, and the feature of the conical grinding method was analyzed.


2011 ◽  
Vol 188 ◽  
pp. 423-428
Author(s):  
Xiao Hu Zheng ◽  
G.L. Zhang ◽  
Cai An Fu ◽  
Ming Chen ◽  
Cheng Yong Wang

A new grinding method for PCB drill-helical-conical grinding method which is combined helical method and conical method is introduced in this paper. Compared with conical grinding method, helical-conical grinding method avoids the tail rising problem and improves the clearance angle distribution along with the main cutting edge. The mathematical model of this method is given in this paper.


2013 ◽  
Vol 331 ◽  
pp. 595-599
Author(s):  
Chun Min Shang ◽  
Dong Mei Zhang ◽  
Jian Dong Yang

A new method is proposed that high speed lapping aspheric surface workpiece using lapping tool by means of bending because there processing difficult, In this study, the principle of high speed lapping has been presented, the mathematical model for the lapping tool has been established, and the equidistance curve error of the lapping tool has been analyzed. The results of the experiment indicate that the forming precision of the lapping tool is high using this method, the surface precision of the workpiece reaches micron grade, furthermore, the aspheric surface workpiece can been machined using this method in lapping, and that it can meet the need of medium precision of machining the aspheric surface workpiece. The experiment result indicates that the the lapping tool shape precision is high, the lapping error of the workpiece is 0.0108mm, and lapping efficiency is high and the cost is low. This aspheric lapping method has incomparable superiority of other processing methods.


2014 ◽  
Vol 988 ◽  
pp. 151-155
Author(s):  
Shao Qiang Yuan ◽  
Yue Hui Yang ◽  
Zhen Liang Wang

The grain growth of Fe-40Ni-Ti alloy was investigated by means of metallographic observation during continuous heating. The experimental results indicate that: the microstructures consist of multi-polygon austenite. No transformation happens of tested alloy during heating only the grain size increases gradually. The size of grain grows steadily below 1160°C until 1200°C, the grain size growth unusually. The process of grain growth has relations with the dissolving of TiN particles. Finally, the mathematical model of grain growth in continuous heating process was obtained for the tested alloy.


2012 ◽  
Vol 602-604 ◽  
pp. 318-322
Author(s):  
Xiu Ping Yan ◽  
Zhang Jian ◽  
Xu Ma

According to the typical large-diameter thick-walled steel T/P91 (10Cr9Mo1VNb), during the hot working, there are dynamic recrystallization and grain growth. The influence of the samples at different hot treatment on the grain size and grain growth rate were obtained by the statistics of the grain size, The grain growth index under various heat treatment were compared, the mathematical model of the austenite grain growth law of P91 alloy steel was established.


Author(s):  
Arturo Hidalgo ◽  
Lourdes Tello

The aim of this work is to introduce a mathematical model representing the evolution of the temperature in a vegetation cover and the ground underneath it. Vegetation, and its interaction with soil, plays a very important role in the protection of soil surface from the action of sun and precipitations. A reduction in the vegetated mass increase the risk of desertification, soil erosion or surface runoffs which which can give rise to soil loss and sediment retention. These processes can favour climate change and global warming, which are major concerns nowadays. The mathematical model presented takes into account the main processes involved in vegetation cover and the interaction with the soil, among which, we can mention the Leaf Area Index, which is a dimensionless quantity defined as the one-sided green leaf area per unit ground surface area, or albedo and co-albedo which are clearly influenced by the vegetation. It is also considered a nonlinear heat capacity in the soil which incorporates the latent heat of fusion, when the phase change takes place. The numerical technique used to solve the mathematical model is based on a finite volume scheme with Weighted Essentially Non Oscillatory technique for spatial reconstruction and the third order Runge-Kutta Total Variation Diminishing numerical scheme is used for time integration. Some numerical examples are solved to obtain the distribution of temperature both in the vegetation cover and the soil.


Sign in / Sign up

Export Citation Format

Share Document