Study on Grinding Mechanism of BCB Grinding Wheel

2012 ◽  
Vol 472-475 ◽  
pp. 2914-2917 ◽  
Author(s):  
Wei Li ◽  
Yang Hong ◽  
Liang Sheng Jin

BCB(Bamboo Charcoal Bonded) grinding wheel is a new kind of grinding wheel developed by bamboo charcoal-phenolic resin composite for ELID(Electrolysis In-process Dressing) grinding technique. To study the affection of the ground workpiece surface roughness and removal rate with this new kind of grinding technique, the stainless steel SUS304 was ground using BCB grinding wheel in different machining parameters with ELID grinding condition, and the machining characteristics of BCB grinding wheel has been researched. The experimental results indicated that the ground workpiece surface roughness can be reached to Ra 0.010μm, and the efficient and precision machining with BCB grinding wheel by ELID grinding technique has been achieved for hard-to-cut materials. Finally, by studying of the grinding wheel surface condition and wear, the BCB grinding wheel grinding mechanism has been preliminary discussed.

2019 ◽  
Vol 26 (1) ◽  
pp. 550-562
Author(s):  
Jialiang Guan ◽  
Longyue Zhang ◽  
Shujun Liu ◽  
Yang Yang

AbstractAiming at the problem of poor processing performance and difficult processing in the process of aluminum-based diamond composites for electronic packaging, this paper uses electrolytic in-process dressing (ELID) grinding technology to grind the aluminum-based diamond composites. The quadratic orthogonal rotation combination method was used to investigate the influence law and degree of grinding depth, grinding wheel linear velocity, duty cycle and electrolysis current on surface roughness. The ELID grinding optimization process parameters of aluminum-based diamond composites obtained by LINGO software are: grinding depth 9.3μm, grinding wheel linear speed 36m/s, duty cycle 63.7%, electrolysis current 11.5A. The surface of the aluminum-based diamond composite with a surface roughness of 125 nm was machined by this optimized process parameter combination.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2008 ◽  
Vol 53-54 ◽  
pp. 155-160 ◽  
Author(s):  
Qiu Sheng Yan ◽  
Ai Jun Tang ◽  
Jia Bin Lu ◽  
Wei Qiang Gao

A new plate polishing technique with an instantaneous tiny-grinding wheel cluster based on the magnetorheological (MR) effect is presented in this paper, and some experiments were conducted to prove its effectiveness and applicability. Under certain experimental condition, the material removal rate was improved by a factor of 20.84% as compared with the conventional polishing methods with dissociative abrasive particles, while the surface roughness of the workpiece was not obviously increased. Furthermore, the composite of the MR fluid was optimized to obtain the best polishing performance. On the basis of the experimental results, the material removal model of the new plate polishing technique was presented.


2015 ◽  
Vol 1101 ◽  
pp. 393-396
Author(s):  
Mohammad Ahsan Habib ◽  
Md. Anayet U. Patwari ◽  
Koushik Alam Khan ◽  
A.N.M. Amanullah Tomal

For cost reduction and quality improvement of machining products, optimum output machining parameters such as material removal rate, tool wear ratio and surface roughness is very essential. Moreover, these output parameters are strongly depends on the precision of the machine tool as well as the input machining parameters. In this paper, a hybrid model of Artificial Bee Colony (ABC), which is motivated by the intelligent behavior of honey bees with Response Surface Methodology (RSM), has been developed for optimizing the surface roughness of stainless steel during turning operation. The predicted optimal value of surface roughness of stainless steel is further confirmed by conducting supplementary experiments. Finally, the performance of this algorithm is evaluated in comparison with desirability analysis. The performance of ABC is at par with that of desirability analysis for different parametric conditions.


2010 ◽  
Vol 34 (2) ◽  
pp. 295-308 ◽  
Author(s):  
Akram Saad ◽  
Robert Bauer ◽  
Andrew Warkentin

This paper investigates the effect of both single-point and diamond-roll dressing techniques on the workpiece surface roughness in grinding. Two empirical surface roughness models are studied – one that incorporates single-point dressing parameters, and another that incorporates diamond-roll dressing parameters. For the experimental conditions used in this research, the corresponding empirical model coefficients are found to have a linear relationship with the inverse of the overlap ratio for single-point dressing and the interference angle for diamond-roll dressing. The resulting workpiece surface roughness models are then experimentally validated for different depths of cut, workpiece speeds and dressing conditions. In addition, the models are used to derive a relationship between overlap ratio for single-point dressing, and interference angle for diamond-roll dressing such that both dressing techniques produce a similar surface finish for a given material removal rate.


2010 ◽  
Vol 135 ◽  
pp. 447-451
Author(s):  
Wei Li ◽  
Jian Wu ◽  
Bao Gong Geng

Electrolytic in-process dressing (ELID) Grinding was an effective machining method for gaining of super smooth surface for hard and brittle materials due to its excellent surface generation capabilities. Bamboo charcoal bonded (BCB) grinding wheel was an environmental friendly ELID grinding wheel which was made up of bamboo charcoal and phenolic resin as bonding agent with high temperature sintering process. In this paper, the electrolysis performances of the BCB grinding wheel with the different resin ratios were researched, and the surface of BCB grinding wheel formed a dense oxide layer in electrolysis action, was illustrated with SEM and XRD analysis.


2013 ◽  
Vol 701 ◽  
pp. 349-353 ◽  
Author(s):  
J.B. Saedon ◽  
Paul J.R. Ding J.R. ◽  
M.S.M. Shawal ◽  
H. Husain ◽  
M.S. Meon

Wire electrical discharge machining (WEDM) is a material removal process of electrically conductive materials by the thermo-electric source of energy .This kind of machining extensively used in machining of materials with highly precision productivity. This work presents the machining of titanium alloy (TI-6AL-4V) using wire electro-discharge machining with brass wire diameter 0.25mm.The objective of this work is to study the influence of three machining parameters namely peak current (IP), feed rate (FC) and wire tension (WT) to material removal rate and surface roughness followed by suggesting the best operating parameters towards good surface finish. A full factorial experimental design was used with variation of peak current, feed rate and wire tension, with results evaluated using analysis of variance (ANOVA) techniques. Parameter levels were chosen based on best practice and results from preliminary testing. Main effects plots and percentage contribution ratios (PCR) are included for the main factors and their interactions. Peak current was shown to have the greatest effect on surface roughness (33% PCR).


2012 ◽  
Vol 576 ◽  
pp. 531-534 ◽  
Author(s):  
Mohamed Konneh ◽  
Mohammad Iqbal ◽  
Nik Mohd Azwan Faiz

Silicon Carbide (SiC) is a type of ceramic that belongs to the class of hard and brittle material. Machining of ceramic materials can result in surface alterations including rough surface, cracks, subsurface damage and residual stresses. Efficient milling of high performance ceramic involves the selection of appropriate operating parameters to maximize the material removal rate (MRR) while maintaining the low surface finish and limiting surface damage. SiC being a ceramic material, its machining poses a real problem due to its low fracture toughness, making it very sensitive to crack. The paper discusses milling of silicon carbide using diamond coated end mill under different machining conditions in order to determine the surface roughness parameter, Rt after the machining processes and to establish a relationship between the machining parameters and response variables. Based on the surface roughness carried out the lowest Rt obtained is 0.46 µm.


Sign in / Sign up

Export Citation Format

Share Document