Quality Inspection of Reinforced Concrete Structures and Reinforcement

2012 ◽  
Vol 479-481 ◽  
pp. 1036-1040
Author(s):  
Na Rui Bu ◽  
Huan Qing Cai ◽  
Run Shan Bai ◽  
Zhi Qiang Li

In the modern design and construction of building structures, building structural safety, reliability is a top priority for construction work. In combination with practical engineering quality inspection and reinforcement methods the building structure are analyzed and presented.

2014 ◽  
Vol 501-504 ◽  
pp. 1061-1064
Author(s):  
Bin Cai ◽  
Xin Hui Liu

In the analysis of engineering structures are usually adopt the method of fixed value, that is the practical engineering structure under load and the performance of materials used by structure shall be treated as a constant value.But, in fact, the structure of geometry size, bear the load, material parameters,computing model and so on are affected by various factors. In order to more accurately reflect the reliability problems of reinforced concrete structures, this paper, the factors above will be regarded as random variables, combining the basic theory of reliability design, through the probability analysis, in normal uselimit state reliability of reinforced concrete structures for example analysis of the influence of related parameters on the structural reliability.


Author(s):  
Sergey B. Krylov ◽  
Ravil S. Sharipov ◽  
Sergey A. Zenin ◽  
Yury S. Volkov

Design standards on building structures should contain, first of all, the performance and assessment requirements of structures. At the same time, design standards should provide the possibility for design and construction of concrete and reinforced concrete parts of buildings and structures that meet the requirements of the Technical regulations "On the safety of buildings and structures". Taking into account the importance of ensuring the reliability and safety of buildings and structures erected with the use of structural concrete, the technical Committee of the international organization for standardization ISO TC 71 "Concrete, reinforced concrete and prestressed concrete", certifies national standards for compliance with the requirements of the international standard ISO 19338 "Performance and Assessment Requirements for Design Standards on Structural Concrete", developed by the same Committee. The standard describes the issues that should be included in the standards for the design of concrete and reinforced concrete structures (terms and definitions, basic requirements, performance requirements,loads and impacts, design estimates, requirements for manufacturing and construction, as well as quality control). These requirements are common to all standards in the design of concrete and reinforced concrete structures. In this regard, it is relevant and important to establish the possibility of presenting the National Code of rules SP 63.13330.2012 "SNiP 52.01-2003 Plain and Reinforced Concrete Structures. General Provisions" for certification for compliance with the requirements of ISO 19338. To achieve this goal, the relevant work has been done, based on the results of which were made the proposals for the submission of SP 63.13330.2012 for certification for compliance with ISO 19338:2014. These proposals are set out in the text of the article.


2020 ◽  
Vol 11 (3) ◽  
pp. 311-324
Author(s):  
Eva Lubloy

Purpose The aim of the research was to investigate the effect of concrete strength on the fire resistance of structures. At first, it may seem contradictory that higher concrete strengths can decrease the fire resistance of building structures. However, if the strength of the concrete exceeds a maximum value, the risk of spalling (the detachment of the concrete surface) significantly. Design/methodology/approach Prefabricated structural elements are often produced with higher strength. The higher concrete strengths generally do not cause a reduction in the load bearing capacity, but it can have serious consequences in case of structural fire design. Results of two prefabricated elements, namely, one slab (TT shaped panel) and one single layer wall panel, were examined. Results of the specimen with the originally designed composition and a specimen with modified concrete composition were examined, were polymer fibres were added to prevent spalling. Findings As a result of the experiments, more strict regulations in the standards the author is suggested including more strict regulations in the standards. It has been proved that to ensure the fire safety of the reinforced concrete structures, it is required after polymer fibres even in lower concrete strength class than prescribed by the standard. In addition, during the classification and evaluation of structures, it is advisable to introduce an upper limit of allowed concrete strength for fire safety reasons. Originality/value As a result of the experiments, the author suggests including more strict regulations in the standards. It has been proved that to ensure the fire safety of the reinforced concrete structures, it is necessary to require the addition of polymer fibres even in lower concrete strength class than prescribed by the standard. In addition, during the classification and evaluation of structures, it is advisable to introduce an upper limit of allowed concrete strength for fire safety reasons.


Author(s):  
Petro Koval ◽  
Vladimir Zelenovskiy

The influence of the composition of the concrete mixture on the state of reinforcing steel as the main problem of corrosion of reinforced concrete structures is considered. The main attention is paid to the need for individual and mandatory consideration of the influence of the properties of additives to concrete on the passivation of reinforcing steel. The purpose of conducting studies to determine the effect of concrete composition on the state of reinforcing steel is to analyze the causes of corrosion of reinforcement, determine the influence of the environment, apply appropriate prevention of this phenomenon and use methods to determine the corrosion state at the design stage of building structures for which reinforced concrete is used. The composition of concrete, in addition to the standard set in various quantitative combinations (cement, gravel, sand, water) today it is advisable to use special additives. Due to their correct and proportional application, you can create a mixture with significantly improved characteristics: with increased frost resistance, strength, durability, with accelerated or delayed setting of the mixture, etc. Nevertheless, you should not forget that the individuality of the composition of additives could affect the ability of concrete to passivate reinforcing steel. It is possible to eliminate the possibility of reducing the passivation of concrete by testing reinforced concrete samples for its protective properties in relation to the reinforcement. The test method is based on the passivation of reinforcing steel in an alkaline environment and consists in evaluating the protective effect of a sample of concrete in relation to a sample of steel reinforcement by comparing data obtained with a change in potential depending on changes in the density of electric current passing through the sample. The issue of quality and durability of reinforced concrete structures, both technically and economically, is attracting increasing attention of builders. It is obvious that in most cases an increase in the initial cost of manufacturing the structure and its reliable protection is economically justified, if this allows reducing the number and cost of repairs during operation. Keywords: reinforcement, corrosion, concrete, reinforced concrete, concrete additive, concrete composition, corrosion state of reinforcement, durability of reinforced concrete structures.


2018 ◽  
Vol 788 ◽  
pp. 36-44
Author(s):  
Liudmyla Demydchuk ◽  
Dmytro Sapozhnyk

The normative documents of Ukraine (DBN V.1.1.7 ̶ 2016) [1] establish that the limit of fire resistance of reinforced-concrete building structures is determined by the calculation method or by fire tests, and shall be at least 45 minutes. Taking into account the modern construction technologies, namely, the reduction of the section of the main building reinforced-concrete structures, it is expedient to use fire-retardant coatings to provide the necessary fire resistance limit.


Author(s):  
Heshmatollah Abdi ◽  
Farzad Hejazi ◽  
Mohd Saleh Jaafar ◽  
Izian Binti Abd Karim

The response modification factor is one of the seismic design parameters that determine the nonlinear performance of building structures during strong earthquakes. Most seismic design codes lead to reduced loads. Nevertheless, an extensive review of related literature indicates that the effect of viscous dampers on the response modification factor is no longer considered. In this study, the effect of implementing viscous damper devices in reinforced concrete structures on the response modification factor was investigated. Reinforced concrete structures with different stories were considered to evaluate the values of the response modification factors. A nonlinear statistic analysis was performed with finite element software. The values of the response modification factors were evaluated and formulated on the basis of three factors: strength, ductility, and redundancy. Results revealed that the response modification factors for reinforced concrete structures equipped with viscous damper devices are higher than those for structures without viscous damper devices. The number of damper devices and the height of buildings have significant effects on response modification factors. In view of the analytical results across different cases, we proposed an equation according to the values of damping coefficients to determine the response modification factors for reinforced concrete structures furnished with viscous damper devices.


2019 ◽  
Vol 135 ◽  
pp. 03010 ◽  
Author(s):  
Ekaterina Kuzina ◽  
Vladimir Rimshin ◽  
Alexey Neverov

Structural safety of buildings is such an engineering state of the structures operability, foundations, the features of their joint power resistance to expected loads and impacts, taking into account their possible combinations in direction, intensity and mode, which ensures the established functional use with established reliability. The structural safety of buildings depends on design, on compositional and structural solutions, technological measures during construction and operation, which must be provided at all stages of the facility’s existence (construction, operation, repair, reconstruction, dismantling and dismantling). It is necessary to take into account the structural safety parameters of reinforced concrete structures that have received corrosion damage during solving the problems of construction and reconstruction of buildings and structures. Suggestions to quantify the reserves and exposure of structural safety and, accordingly, the reduction in power resistance of corrosion-damaged reinforced concrete structures are presented in this article.


2019 ◽  
Vol 135 ◽  
pp. 02022
Author(s):  
Tamara Danchenko ◽  
Anatoly Lastovka ◽  
Sergey Amelchugov ◽  
Nadezhda Klinduh ◽  
Maria Berseneva

Abstract in the article the main types of building structures are considered, which are distinguished by the type of material. For the purpose of studying, each type has brief information including its advantages and disadvantages in comparison with others. In the section reinforced concrete structures, the authors characterize this material from three sides - this is the method of manufacture, the type of concrete and its stressed state. As a result, it was found that when choosing a foundation, special attention is paid to: bearing capacity, type of building being built, soil characteristics. In addition to the above, it can be added that weight reduction, cost reduction and material consumption in reinforced concrete structures are possible through the use of high-strength concrete and reinforcement. Metal structures are the most popular building material. The possibilities of this material are very diverse: building designs, designs specifically for certain seismic and climatic conditions, and high decorative properties. Due to its strength and rigidity, buildings can withstand hurricane gusts of wind and earthquakes. In the manufacture of structures in the factory and during installation, steel is subjected to various technological operations: welding, cutting, machining. It was found that in this case the steel does not collapse, it retains the microstructure and mechanical properties. Finally, steel should not have a significant cost of manufacturing structures from it. Turning to the section of wooden structures, the authors list the main advantages - it is comfortable and environmentally friendly and material.


Author(s):  
Alexander M. Belostotsky ◽  
Pavel A. Akimov ◽  
Andrey A. Aul ◽  
Dmitry S. Dmitriev ◽  
Yulia N. Dyadchenko ◽  
...  

It is obvious that contemporary design and construction of unique buildings and structures is unthinkable without mathematical (numerical) and computer modelling and advanced analysis ofload-bearing structures under various kinds ofloads and impacts. One of the most ambitious and important construction projects is the uniquelarge-span structures. These are, in particular, stadiums, sports palaces and water parks, shopping malls, pedestrian, road and railway bridges of various design solutions. The distinctive paper is devoted to theoretical foundations and results of mathematical (numerical) modeling of the state (in terms of the analysis of stress-strain state, strength and stability) of football stadiums built for the 2018 FIFA World Cup in Russia. Finite element method is used for approximation and high-precision numerical solution of corresponding boundary problems of structural mechanics. It is the most universal and powerful numerical method of mechanics. The paper, in particular, describes some features of development of finite element models and the main results of the analysis of the mechanical (structural) safety of three- dimensionallarge-span systems "soil foundation - reinforced concrete structures of foundations and stands - steel structures of the coating and facades" of these football stadiums with the basic and specialload combinations. In addition, the key procedures of scientific support during the corresponding expertise and assessments are outlined. Generally, socially significant and knowledge-intensive problem of providing mechanical (constructive) safety of unique combined objects of construction (three-dimensional systems "foundation - reinforced concrete structures of foundations and stands - steel structures of coating and facades") has been solved at a new level as a result of the performed complex of research works.


Sign in / Sign up

Export Citation Format

Share Document