Research of Bond-Slip Constitutive Relation Model between Fiber Gypsum Board and Concrete Materials

2012 ◽  
Vol 485 ◽  
pp. 584-587
Author(s):  
Quan Bin Zhao ◽  
Xin Liang Jiang

How to establish the bond-slip constitutive relation model of concrete and gypsum board will be of great academic significance. Through the pull-out experiment of CFFP, the load-slip curves is obtained. The characteristics and research situation of bond-slip performance at the inter face of concrete and other materials are introduced, and the bond-slip constitutive relation models are summarized at the same time. By using the fitting operation, the proposed constitutive relation is put forward , which is feasible and can be applied to further research on CFFP.

2011 ◽  
Vol 255-260 ◽  
pp. 3133-3136
Author(s):  
Quan Bin Zhao ◽  
Xin Liang Jiang

The characteristics and research situation of bond-slip performance at the inter face of concrete and other materials are introduced, and the bond-slip constitutive relation models are summarized at the same time. Through the load-slip curves obtained from the pull-out experiment of CFFP, the proposed bond-slip constitutive relation models are presenting, including the simple one. With the numerical simulation analysis of CFFP is carried out by the use of the proposed constitutive relation, while the numerical simulation results are in good agreement with the experimental results conducted before, which is feasible and can be applied to further research on CFFP.


2020 ◽  
Vol 18 (4) ◽  
pp. 761-772
Author(s):  
Haitao Wang ◽  
Tao Guo ◽  
Haoyu Sun

Purpose This paper aims to focus on establishing the bond-slip constitutive relation of mortar anchor under high loading rates by the dynamic pull-out test. Design/methodology/approach Self-made specimens were made for the dynamic pull-out test to explore the bond performance of mortar anchor, and the bond-slip constitutive relation of mortar anchor under high loading rates was established according to the analysis of test data. Findings During the loading process, the position of the peak bond stress was observed to translate to the free end. The bearing capacity of the mortar anchor was enhanced to some extent due to the increase of the loading rate. Originality/value The bond-slip constitutive relation of mortar anchor under high loading rates was established with the introduction of the position function and dynamic-load expanded coefficient.


2013 ◽  
Vol 302 ◽  
pp. 359-364
Author(s):  
X.H. Zheng ◽  
P.Y. Huang ◽  
X.Y. Guo ◽  
Q. Han

Externally bonded reinforcing technique with fiber reinforced polymer (FRP) has been widely used in civil engineering. The performance of the interface between FRP and concrete is one of the key factors affecting the behavior of the strengthened structures. This paper presents a detailed study on the bond-slip mechanism between carbon fiber laminate (CFL) and concrete based on double-shear tests. 8 specimens with different bonded length and width of CFL were tested under static loading. Strain gauges along the CFL face and displacement sensor were used to measure longitudinal strains and slip of the interface. The bond-slip constitutive relation of the interface between CFL and concrete was analyzed with the testing results. Compared with four different bond-slip models, a shear stress-slip model was proposed based on the experimental data.


Author(s):  
Katarzyna Zdanowicz ◽  
Boso Schmidt ◽  
Hubert Naraniecki ◽  
Steffen Marx

<p>The bond behaviour of concrete specimens with carbon textile reinforcement was investigated in the presented research programme. Pull-out specimens were cast from self-compacting concrete with expansive admixtures and in this way chemical prestress was introduced. The aim of the research was to compare bond behaviour between prestressed specimens and non-prestressed control specimens. During pull-out tests, the pull-out force and notch opening were measured with a load cell and laser sensors. Further, bond - slip and pull-out force - crack width relationships were drawn and compared for prestressed and non-prestressed specimens. Chemically prestressed specimens reached 24% higher bond strength than non-prestressed ones. It can be therefore concluded, that chemical prestressing positively influences the bond behaviour of concrete with textile reinforcement and thus better utilisation of its properties can be provided.</p>


2018 ◽  
Vol 40 (7) ◽  
pp. 2840-2849
Author(s):  
Qingping Jin ◽  
Guangbo Wang ◽  
Tingying Liang ◽  
Peixia Chen
Keyword(s):  

2002 ◽  
Vol 29 (2) ◽  
pp. 191-200 ◽  
Author(s):  
M Alavi-Fard ◽  
H Marzouk

Structures located in seismic zones require significant ductility. It is necessary to examine the bond slip characteristics of high strength concrete under cyclic loading. The cyclic bond of high strength concrete is investigated under different parameters, including load history, confining reinforcement, bar diameter, concrete strength, and the rate of pull out. The bond strength, cracking, and deformation are highly dependent on the bond slip behavior between the rebar and the concrete under cyclic loading. The results of cyclic testing indicate that an increase in cyclic displacement will lead to more severe bond damage. The slope of the bond stress – displacement curve can describe the influence of the rate of loading on the bond strength in a cyclic test. Specimens with steel confinement sustained a greater number of cycles than the specimens without steel confinement. It has been found that the maximum bond strength increases with an increase in concrete strength. Cyclic loading does not affect the bond strength of high strength concrete as long as the cyclic slip is less than the maximum slip for monotonic loading. The behavior of high strength concrete under a cyclic load is slightly different from that of normal strength concrete.Key words: bond, high strength, cyclic loading, bar spacing, loading rate, failure mechanism.


2017 ◽  
Vol 747 ◽  
pp. 319-325 ◽  
Author(s):  
Matteo Maragna ◽  
Cristina Gentilini ◽  
Giovanni Castellazzi ◽  
Christian Carloni

In this paper, the preliminary results of a series of pull-out tests conducted on mortar cylinders with embedded bars are presented. The bars are made of high strength stainless steel and are of helical shape to increase mechanical interlocking with the surrounding mortar. Usually, such bars are employed in situ to realize structural repointing in the case of fair-faced masonry walls. To this aim, they are inserted in the mortar bed joints of masonry for providing tensile strength to the walls and with the function of crack stitching. The aim of the present experimental tests is to determine the bond-slip relationship for bars embedded in masonry. Firstly, pull-out tests are conducted on mortar cylinders considering different embedded lengths of the bars. Further tests are on-going on masonry specimens with bars embedded in the mortar joints. An analytical investigation is also carried out for the interpretation of the pull-out test results.


Sign in / Sign up

Export Citation Format

Share Document