Flame Retardant Properties of Fiber-Based Decorative Wallboard

2012 ◽  
Vol 487 ◽  
pp. 739-747
Author(s):  
Zuo Dong Qin ◽  
G.J. Duns ◽  
Zhang Lin ◽  
Ji Shuang Chen

In this study, bamboo pulp is utilized as the main raw material for the production of compression-molded, fiber-based decorative wallboard panels which have three-dimensional geometric structure and possess environmentally compatible “green” flame retardant properties. The effectiveness of several flame retarding agents, including the Al(OH)3 single component system, the Al(OH)3/Mg(OH)2 mixed system and the Al(OH)3/Mg(OH)2/Zinc Borate mixed system are examined in terms of the resulting flame resistance, physical properties and oxygen indexes of the fiber-based decorative wallboard. The results show that the Al(OH)3/Mg(OH)2/Zinc Borate multicomponent mixed system is the most ideal flame retardant system for such applications. Results indicate that the optimal formulation consist of: 30% Mg(OH)2/25% Al(OH)2 /15% Zinc borate (relative mass ratio). Under such conditions, the oxygen index of the fiber decorates wallboard is 34.4, and the level of formaldehyde release reaches a value of E0.

ACS Omega ◽  
2021 ◽  
Author(s):  
Linyuan Wang ◽  
Yabing Yang ◽  
Hongbo Deng ◽  
Wenyi Duan ◽  
Jiajie Zhu ◽  
...  

2014 ◽  
Vol 1030-1032 ◽  
pp. 241-245 ◽  
Author(s):  
Yan Wei Li

In this paper, the effect of C3H6N6modified by imidazolium based Ionic Liquid 1-butyl-methylimidazolium hexafluorophosphate ([BMIM]PF6) on polyurethane rigid foam flame retardant properties was conducted.The results show that the flame retardant properties of C3H6N6 modified with Ionic Liquid significantly increased and the LOI increased form 22.3 to 24.5. In the modification process, the ionic liquid mass have a very noticeable effect to the flame retardant property and when [BMIM]PF6 and C3H6N6 in quality was 4:6, Fire-retardant effect was best.Compared with the prior to the modification, C3H6N6 modified can increase effective Flame resistance of materials, horizontal burning speed from 67.6mm/min down to 33.4mm/min.Thermal degradation data show that C3H6N6 modified could improve initial decomposition temperature and reminder yield of rigid polyurethane foam,and then heat release reduced, the decomposition controlled,thermal stability increased.


RSC Advances ◽  
2016 ◽  
Vol 6 (67) ◽  
pp. 63091-63098 ◽  
Author(s):  
Yi Qian ◽  
Xiaoyan Zhu ◽  
Shanshan Li ◽  
Xilei Chen

Ethylene-vinyl acetate (EVA)/oil sludge (OS)/fumed silica (SiO2) composites were synthesized using OS containing CaCO3as raw material.


2012 ◽  
Vol 7 (8) ◽  
pp. 863 ◽  
Author(s):  
Pingqiang Gao ◽  
Wenhua Song ◽  
Feng Ding ◽  
Xin Wang ◽  
Mengmeng Li

2017 ◽  
Vol 44 (1) ◽  
pp. 1-8
Author(s):  
K. Lehmann ◽  
A. Nawracala

The following article discusses the use of novel compounds from the Tegosil series which are intended to significantly increase the thermal conductivity of HCR- and even LSR-based silicone elastomers or to provide a simple way of improving their flame retardant properties by adding these compounds. Heat transfer characteristics from hot disc testing are presented and the reduced burn time in the UL 94 test demonstrates the improved flame resistance of the resulting elastomer formulations.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Lin Liu ◽  
Rui Lv

AbstractA DOPO (9,10-dihydro-9-oxa-10-phosphaphen-anthrene-10-oxide)-based halogen-free flame retardant (ODOPM-CYC) was synthesized and incorporated in rigid polyurethane foam (RPUF). The structure of ODOPM-CYC was characterized by Fourier transform infrared spectra (FTIR), 1H NMR and 31P NMR. The effects of ODOPM-CYC on the flame resistance, mechanical performances, thermal properties and cell structure of RPUF were also investigated. The results showed that the incorporation of ODOPM-CYC strikingly enhanced flame retardant properties of RPUF. The flame retarded RPUF acquired a limiting oxygen index (LOI) value of 26% and achieved UL-94 V-0 rating with the phosphorus content of 3 wt%. The smoke production rate (SPR) also showed an obvious decrease and total smoke release (TSR) was 39.8% lower than that of neat RPUF. Besides, the results demonstrated that the incorporation of ODOPM-CYC provided RPUF better thermal stability but did not show any obvious influence on its thermal conductivity.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Riadh Zouari ◽  
Sondes Gargoubi

Among the various advanced materials, flame-retardant cellulosic textiles are important as they directly relate to human health and hazards. The use of environmentally friendly flame-retardant coatings is currently one of the major concerns in the textile coating industry. In this work, acrylic acid was grafted onto the surface of cotton using plasma technology to enhance the attachment of acrylate phosphate monomer. Surface analyses, such as scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR), were carried out to characterize the coating. Textile properties such as wettability and mechanical properties of untreated and treated cotton samples were investigated. A laundering test was also performed to predict the durability of the finishing. The outcomes revealed that acrylic acid-grafted samples treated with acrylate phosphate monomer have good flame-retardant properties.


2013 ◽  
Vol 652-654 ◽  
pp. 406-409
Author(s):  
Feng Tian ◽  
Yan Rong Ni ◽  
Chao Hua Su

The Formula of flame retardant material for PE insulated cable was developed. It mainly included 42 phrs LDPE,18 phrs EVA,7phr Magnesium carbonate,32phr Aluminum hydroxide,6phr silica,6phr Zinc borate and 5phr Silicone. The mixture was extruded through mixing and samples were made. Relative experiment showed that silicone had good effect on improvement of flame retardant properties of insulating materials. Zinc borate had promoting effect of the flame retardant. Silica had barrier effect. When parts of PE was substituted by EVA, the mechanical and flame retardant properties of the materials increased.


MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3551-3556 ◽  
Author(s):  
Álvaro Camargo ◽  
Claudia M Ibañez

ABSTRACTZinc borate has long been used as a protector for wood products due to its fungicide, insecticide and flame retardant properties. In this initial study, its capacity as a flame retardant when applied to Eucalyptus grandis wood is evaluated; micronized zinc borate, synthesized from zinc oxide and boric acid in our laboratory was used. The methodology used in the study is the use of the Vandersall tunnel, which allowed analyzing parameters such as the flame spread, the carbonization index, the carbonization area and the wood weight loss. The results show a remarkable improvement in these parameters after the application of micronized zinc borate. For the longest fire exposure time, the percentage decrease of each evaluated parameter is, for tangential and radial plane respectively: 31.27-43.00% for flame spread, 36.66-40.86% for carbonization area, 33.01-52.49% for carbonization index and 19.86-57.80% for mass loss.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ning Lu ◽  
Pengchao Zhang ◽  
Ya’nan Wu ◽  
Danqing Zhu ◽  
Zhu Pan

This paper is aimed at assessing the fire retardancy and thermal stability of intumescent flame retardant (IFR) containing ammonium polyphosphate (APP), pentaerythritol (PER), and melamine (MEL). Zinc borate (ZB) was added at the loading of 2%, 4%, 6%, 8%, 10%, and 12% by weight of IFR. The sizes of investigated ZB fall in 3 ranges: 1-2 μm, 2-5 μm, and 5-10 μm. The performance of APP/PER/MEL was investigated by using thermogravimetry analysis (TGA), cone calorimeter test, Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy, and energy-dispersive spectrometry. The results obtained from the above experiments show that the incorporation of ZB can improve the fire protection performance. A 77% decrease in total smoke production and 84.6% decrease in total heat release were achieved for the addition of 2 wt% ZB (2-5 μm) in the IFR coating. TGA results indicate an increased amount of char residue. Compared to the control IFR coating, the char residue of IFR containing 2 wt% ZB (2-5 μm) has increased approximately 1.5-fold, 10-fold, and 25-fold, at 600°C, 700°C, and 800°C, respectively. The effective char formation results in excellent smoke suppression. Regarding smoke suppression performance, the order for smoke density is IFR/ZB (2-5 μm) < IFR/ZB (5-10 μm) < IFR/ZB (1-2 μm), regardless of investigated loading levels. The decline of smoke suppression performance for IFR/ZB (5-10 μm) and IFR/ZB (1-2 μm) is believed to be due to the poor char formation, as a result of a weak interaction of APP, PER, MEL, and ZB. This weak interaction is caused by the decrease in the specific surface area and agglomeration of ZB particles for IFR/ZB (5-10 μm) and IFR/ZB (1-2 μm), respectively.


Sign in / Sign up

Export Citation Format

Share Document