Experimental Study of Heat Pipe Exchanger for High Power LED Cooling System

2012 ◽  
Vol 490-495 ◽  
pp. 2278-2281
Author(s):  
Yun Jun Gou ◽  
Xiao Hui Zhong

A new cooling concept for high power LED street lamp by combining the heat release of high power LED with two-phase heat transfer heat pipes was proposed, and in this study a series of heat pipes with specific fins structure were developed. Through experimental results, we found the new heat pipe heat exchangers have the features of higher efficiency of heat dissipation and more compact construction which meets the demand of heat dissipation for high power LED than the traditional heat pipe heat exchangers and the new exchanger with outwards-radiate structure has the best heat dissipation performance.

2011 ◽  
Vol 295-297 ◽  
pp. 1985-1988
Author(s):  
Yu Jun Gou ◽  
Zhong Liang Liu ◽  
Xiao Hui Zhong

A new cooling concept for high power LED by combining the heat release of high power LED with two-phase heat transfer heat pipes was proposed, and in this study a new type of heat pipe with specific fins structure was developed. Through experimental results, we found the new heat pipe heat exchanger has the features of high efficiency of heat dissipation and compact construction which meets the demand of heat dissipation for high power LED. We also found the heat dissipation performance of the HP heat exchanger changed with the work angle.


2012 ◽  
Vol 490-495 ◽  
pp. 2530-2533
Author(s):  
Yun Jun Gou ◽  
Zhong Liang Liu ◽  
Chun Min Wang ◽  
Xiao Hui Zhong

A new cooling concept for high power LED street lamp by combining the heat release of high power LED with two-phase heat transfer heat pipes was proposed, and in this paper we study the effect of heat pipe numbers, fins structure and ambient temperature on the performance of heat dissipation of HP heat exchanger. Through experimental results, we found the heat pipes number plays a more importent role on the performance of heat dissipation than the fins material and the final surface temperature will increase with the environmental temperature.


Author(s):  
Devdatta P. Kulkarni ◽  
Priyanka Tunuguntla ◽  
Guixiang Tan ◽  
Casey Carte

Abstract In recent years, rapid growth is seen in computer and server processors in terms of thermal design power (TDP) envelope. This is mainly due to increase in processor core count, increase in package thermal resistance, challenges in multi-chip integration and maintaining generational performance CAGR. At the same time, several other platform level components such as PCIe cards, graphics cards, SSDs and high power DIMMs are being added in the same chassis which increases the server level power density. To mitigate cooling challenges of high TDP processors, mainly two cooling technologies are deployed: Liquid cooling and advanced air cooling. To deploy liquid cooling technology for servers in data centers, huge initial capital investment is needed. Hence advanced air-cooling thermal solutions are being sought that can be used to cool higher TDP processors as well as high power non-CPU components using same server level airflow boundary conditions. Current air-cooling solutions like heat pipe heat sinks, vapor chamber heat sinks are limited by the heat transfer area, heat carrying capacity and would need significantly more area to cool higher TDP than they could handle. Passive two-phase thermosiphon (gravity dependent) heat sinks may provide intermediate level cooling between traditional air-cooled heat pipe heat sinks and liquid cooling with higher reliability, lower weight and lower cost of maintenance. This paper illustrates the experimental results of a 2U thermosiphon heat sink used in Intel reference 2U, 2 node system and compare thermal performance using traditional heat sinks solutions. The objective of this study was to showcase the increased cooling capability of the CPU by at least 20% over traditional heat sinks while maintaining cooling capability of high-power non-CPU components such as Intel’s DIMMs. This paper will also describe the methodology that will be used for DIMMs serviceability without removing CPU thermal solution, which is critical requirement from data center use perspective.


2011 ◽  
Vol 115 (1169) ◽  
pp. 403-410
Author(s):  
R. Camilleri ◽  
S. Ogaji ◽  
P. Pilidis

Abstract With the ever-increasing pressure for cleaner and more fuel efficient aero engines, gas turbine manufacturers are faced with a big challenge which they are bound to accept and act upon. The path from current high bypass ratio (BPR) engines to ultra high BPR engines via geared turbo fans will enable a significant reduction in SFC and CO2 emissions. However, in order to reach the emission levels set by the advisory council for aeronautics research in Europe (ACARE), the introduction of more complex cycles that can operate at higher thermal efficiencies is required. Studies have shown that one possibility of achieving higher core efficiencies and hence lower SFC is through the use of an intercooled recuperated (ICR) core. The concept engine, expected to enter into service around 2020, will make use of a conventional fin plate heat exchangers (HEX) for the intercooler and a tube type HEX as the recuperator. Although the introduction of these two components promises a significant reduction in SFC levels, they will give also rise to higher engine complexity, pressure losses and additional weight. Thus, the performance of the engine relies not only on the behaviour of the usual gas turbine components, but will be heavily dependent on the two heat exchangers. This paper seeks to introduce a heat pipe heat exchanger (HPHEX) as alternative designs for the intercooler and the recuperator. The proposed HPHEX designs for application in an ICR aero engine take advantage of the convenience of the geometry of miniature heat pipes to provide a reduction in pressure losses and weight when compared to conventional HEX. The proposed HPHEX intercooler design eliminates any ducting to and from the intercooler, offering up to 32% reduction in hot pressure losses, 34% reduction in cold pressure losses and over 41% reduction in intercooler weight. On the other hand the proposed HPHEX recuperator design can offer 6% improvement in performance, while offering 36% reduction in cold pressure losses, up to 80% reduction in hot pressure losses and over 31% reduction in weight. An ICR using HPHEX for the intercooler and recueprator may offer up to 2·5% increase in net thrust, while still offering 3% reduction in SFC and up to 7·7% reduction in NOX severity parameter, when compared to the ICR using conventional HEX.


2014 ◽  
Vol 602-605 ◽  
pp. 2713-2716 ◽  
Author(s):  
Xin Rui Ding ◽  
Yu Ji Li ◽  
Zong Tao Li ◽  
Yong Tang ◽  
Bin Hai Yu ◽  
...  

LED has been regarded as the next generation lighting source. As for high power LED lamps, heat accumulation will cause a series of problems. Therefore, thermal management is very important for designing a high power LED lamp. Three types of heat sinks are designed by using the finite element analysis (FEA) method for an 180W high power LED lamp. Then the optimized heat sinks are developed and experiments are performed to demonstrate the simulated results. At the same time, the thermal performances with different working angles are investigated experimentally. The heat sink with heat pipe has a better heat dissipation performance than the conventional heat sink under the same input power. The working angles of the lamps greatly influence the thermal performance of each heat sink. For the same heat sink, the temperature varies with different install directions and working angles. Finally, the heat sink with the best thermal performance is recommended. The results have practical significance in designing high power LED lamps.


2011 ◽  
Vol 42 (11) ◽  
pp. 1257-1262 ◽  
Author(s):  
Xiang-you Lu ◽  
Tse-Chao Hua ◽  
Yan-ping Wang

2019 ◽  
Vol 29 (10) ◽  
pp. 3893-3907
Author(s):  
Yuanlong Chen ◽  
Tingbo Hou ◽  
Xiaochao Zhou

Purpose The purpose of this paper is to ensure adequate thermal management to remove and dissipate the heat produced by a light-emitting diode (LED) and to guarantee reliable and safe operation. Design/methodology/approach A three-dimensional (3-D) computational fluid dynamics (CFD) model was used to analyze the distribution of fluid velocities among microchannels at four different aspect ratios. Findings The results showed that at the same inlet flow rate, the larger the aspect ratio of the microchannels, the better the uniformity of the internal fluid velocity and thus better the heat dissipation performance on the surface of the high-power LED chip. In addition, the thermal performance of a high-power LED water cooling system with four different aspect ratios’ microchannel structures is further studied experimentally. Specifically, the coupling effect between the fluid velocity distribution in the microchannels and the heat dissipation performance of a high-power LED water cooling system is qualitatively analyzed and compared with the simulation results of the fluid velocity distribution. The results fully demonstrated that a larger aspect ratio of the microchannels results in better heat dissipation performance on the surface of the high-power LED chip. Originality/value Optimizing the structural parameters to facilitate a relatively uniform velocity distribution to improve the water cooling system performance may be a key factor to be considered.


2011 ◽  
Vol 130-134 ◽  
pp. 3967-3971
Author(s):  
San Shan Hung ◽  
Hsing Cheng Chang ◽  
Jhih Wei Huang

The main result of this study is to propose a liquid-cooling system for high power LED heat dissipation treatment. By using thermal dissipation mechanism and based on ANSYS CFX numerical analysis of change the parameters of cold plat. We will get the optimal heat dissipation structure. The experimental results show that the Taguchi method of thermal mechanisms in this study of the four control factors affecting the order: k value of thermal compound > fan power > liquid type > pump flow rate, and to identify the best combination of factor levels. When the heat source is 90 W, the best factor of the experimental cooling system thermal resistance is 0.563K/W. Nomenclature


Sign in / Sign up

Export Citation Format

Share Document