Experimental Study of Heat Pipe Exchanger for High Power LED Cooling System

2011 ◽  
Vol 295-297 ◽  
pp. 1985-1988
Author(s):  
Yu Jun Gou ◽  
Zhong Liang Liu ◽  
Xiao Hui Zhong

A new cooling concept for high power LED by combining the heat release of high power LED with two-phase heat transfer heat pipes was proposed, and in this study a new type of heat pipe with specific fins structure was developed. Through experimental results, we found the new heat pipe heat exchanger has the features of high efficiency of heat dissipation and compact construction which meets the demand of heat dissipation for high power LED. We also found the heat dissipation performance of the HP heat exchanger changed with the work angle.

2012 ◽  
Vol 490-495 ◽  
pp. 2530-2533
Author(s):  
Yun Jun Gou ◽  
Zhong Liang Liu ◽  
Chun Min Wang ◽  
Xiao Hui Zhong

A new cooling concept for high power LED street lamp by combining the heat release of high power LED with two-phase heat transfer heat pipes was proposed, and in this paper we study the effect of heat pipe numbers, fins structure and ambient temperature on the performance of heat dissipation of HP heat exchanger. Through experimental results, we found the heat pipes number plays a more importent role on the performance of heat dissipation than the fins material and the final surface temperature will increase with the environmental temperature.


2012 ◽  
Vol 490-495 ◽  
pp. 2278-2281
Author(s):  
Yun Jun Gou ◽  
Xiao Hui Zhong

A new cooling concept for high power LED street lamp by combining the heat release of high power LED with two-phase heat transfer heat pipes was proposed, and in this study a series of heat pipes with specific fins structure were developed. Through experimental results, we found the new heat pipe heat exchangers have the features of higher efficiency of heat dissipation and more compact construction which meets the demand of heat dissipation for high power LED than the traditional heat pipe heat exchangers and the new exchanger with outwards-radiate structure has the best heat dissipation performance.


2006 ◽  
Vol 326-328 ◽  
pp. 309-312 ◽  
Author(s):  
Sung Jun Lee ◽  
Ji Hyun Park ◽  
Chang Hyun Lim ◽  
Won Kyu Jeong ◽  
Seog Moon Choi ◽  
...  

By the development of high power LED for solid states lighting, the requirement for driving current has increased critically, thereby increasing power dissipation. Heat flux corresponds to power dissipation is mainly generated in p-n junction of LED, so the effective removal of heat is the key factor for long lifetime of LED chip. In this study, we newly proposed the silicon package for high power LED using MEMS technology and estimated its heat dissipation characteristic. Our silicon package structure is composed of base and reflector cup. The role of base is that settle LED chip at desired position and supply electrical interconnection for LED operation, and finally transfer the heat from junction region to outside. For improved heat transfer, we introduced the heat conductive metal plated trench structure at the opposite side of LED attached side. The depth and the diameter of trench were 150 and 100um, respectively. Copper with high thermal conductivity than silicon was filled in trench by electroplating and the thickness of copper was about 100um. Reflector cup was formed by anisotropic wet etching and then, silicon package platform could be fabricated by eutectic bonding between base and reflector cup. The thermal resistance of silicon package was about 6 to 7K/W from junction to case, and also, thermal resistance reduction of 0.64K/W was done by metal plated trench. This result could be comparable to that of other high power LED package. Our silicon package platform is easy to be expanded into array and wafer level package. So, it is suitable for future high efficiency and low cost package.


2014 ◽  
Vol 602-605 ◽  
pp. 2713-2716 ◽  
Author(s):  
Xin Rui Ding ◽  
Yu Ji Li ◽  
Zong Tao Li ◽  
Yong Tang ◽  
Bin Hai Yu ◽  
...  

LED has been regarded as the next generation lighting source. As for high power LED lamps, heat accumulation will cause a series of problems. Therefore, thermal management is very important for designing a high power LED lamp. Three types of heat sinks are designed by using the finite element analysis (FEA) method for an 180W high power LED lamp. Then the optimized heat sinks are developed and experiments are performed to demonstrate the simulated results. At the same time, the thermal performances with different working angles are investigated experimentally. The heat sink with heat pipe has a better heat dissipation performance than the conventional heat sink under the same input power. The working angles of the lamps greatly influence the thermal performance of each heat sink. For the same heat sink, the temperature varies with different install directions and working angles. Finally, the heat sink with the best thermal performance is recommended. The results have practical significance in designing high power LED lamps.


2019 ◽  
Vol 29 (10) ◽  
pp. 3893-3907
Author(s):  
Yuanlong Chen ◽  
Tingbo Hou ◽  
Xiaochao Zhou

Purpose The purpose of this paper is to ensure adequate thermal management to remove and dissipate the heat produced by a light-emitting diode (LED) and to guarantee reliable and safe operation. Design/methodology/approach A three-dimensional (3-D) computational fluid dynamics (CFD) model was used to analyze the distribution of fluid velocities among microchannels at four different aspect ratios. Findings The results showed that at the same inlet flow rate, the larger the aspect ratio of the microchannels, the better the uniformity of the internal fluid velocity and thus better the heat dissipation performance on the surface of the high-power LED chip. In addition, the thermal performance of a high-power LED water cooling system with four different aspect ratios’ microchannel structures is further studied experimentally. Specifically, the coupling effect between the fluid velocity distribution in the microchannels and the heat dissipation performance of a high-power LED water cooling system is qualitatively analyzed and compared with the simulation results of the fluid velocity distribution. The results fully demonstrated that a larger aspect ratio of the microchannels results in better heat dissipation performance on the surface of the high-power LED chip. Originality/value Optimizing the structural parameters to facilitate a relatively uniform velocity distribution to improve the water cooling system performance may be a key factor to be considered.


2011 ◽  
Vol 130-134 ◽  
pp. 3967-3971
Author(s):  
San Shan Hung ◽  
Hsing Cheng Chang ◽  
Jhih Wei Huang

The main result of this study is to propose a liquid-cooling system for high power LED heat dissipation treatment. By using thermal dissipation mechanism and based on ANSYS CFX numerical analysis of change the parameters of cold plat. We will get the optimal heat dissipation structure. The experimental results show that the Taguchi method of thermal mechanisms in this study of the four control factors affecting the order: k value of thermal compound > fan power > liquid type > pump flow rate, and to identify the best combination of factor levels. When the heat source is 90 W, the best factor of the experimental cooling system thermal resistance is 0.563K/W. Nomenclature


Author(s):  
Xinqiang Xu ◽  
Bahgat G. Sammakia ◽  
DaeYoung Jung ◽  
Thor Eilertsen

Supercapacitors are a strong candidate for high-power applications such as electric/hybrid vehicles and electronic devices due to their high power densities and high efficiency particularly at low temperatures. In these applications, supercapacitors are used as energy-storage devices with capability of providing the peak-power requirement. They are subject to heavy duty cycling conditions which result in significant heat generation inside the supercapacitors. Therefore, thermal management is a key issue concerning lifetime and performance of supercapacitors. Accurate modeling of temperature field inside supercapacitors is essential for designing an appropriate cooling system, meeting the safety and reliability requirements of power systems. The objective of this paper is to study the transient and spatial temperature distribution in supercapacitors, in which a supercapacitor product with prismatic structure, based on the activated carbon and organic electrolyte technology, was chosen for modeling. A multi-dimensional thermal and electrochemical coupled model was developed by a commercial software COMSOL. In this approach, the 3D energy equation was coupled with a 1D electrochemical model via the heat generation and temperature-dependent physicochemical properties, including diffusion coefficient and ionic conductivity of electrolyte ions. Location-dependent convection and radiation boundary conditions were applied to reflect different heat dissipation phenomena of all surfaces. This model is capable of predicting electrochemical performance and temperature distribution for different involved parameters. The results of this model can also be used to determine the optimum thermal management system for various supercapacitor applications.


2017 ◽  
Vol 31 (6) ◽  
pp. 2607-2612 ◽  
Author(s):  
Shili Shu ◽  
Guanyu Hou ◽  
Lijie Wang ◽  
Sicong Tian ◽  
Leonid L. Vassiliev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document