The Experimental Research on the Effect of Age on Bond Behavior between Deformed Bar and Shale Ceramic Concrete

2012 ◽  
Vol 502 ◽  
pp. 458-462
Author(s):  
Yan Wu ◽  
Jie Yu ◽  
Yan Wang

In this paper, the effect of age on bond behavior between deformed bar and shale ceramic concrete was analyzed by four groups of pull-out tests with different age. And three reinforced concrete pull-out tests used for comparative analysis were prepared at the same time. We obtained a series of experimental data and based on these data a more accurate formula was summed up. This conclusion is important for further study on bonding properties of ceramic concrete and has a high value in guiding the actual construction.

2011 ◽  
Vol 403-408 ◽  
pp. 444-448
Author(s):  
Wei Jun Yang ◽  
Jie Yu ◽  
Yan Wang

In this paper, the effect of bond-anchoring factor on bond behavior between deformed bar and shale ceramic concrete was analyzed by four groups of pull-out tests with different anchorage length. And three reinforced concrete pull-out tests used for comparative analysis were prepared at the same time. We obtained a series of experimental data and based on these data .A more accurate formula was summed up. This formula has a high value in guiding the practical project to choose the anchorage length.


2011 ◽  
Vol 366 ◽  
pp. 281-285 ◽  
Author(s):  
Jian Yu Yang ◽  
Jie Yu ◽  
Yan Wang

In this paper, the effect of cover thickness on bond behavior between deformed bar and shale ceramsite concrete was analyzed by four groups of pull-out tests which with different cover thickness. And three reinforced concrete pull-out tests used for comparative analysis were prepared at the same time. We obtained a series of experimental data and based on these data a more accurate formula was summed up. This formula has a high value in guiding the practical project to choose the cover thickness.


2013 ◽  
Vol 639-640 ◽  
pp. 334-340
Author(s):  
Wen Ling Tian ◽  
Li Min Zhang

Textile reinforced concrete (TRC) allows the light weight structures and offers a high effectiveness of the reinforcement by using continuous yarns. The study on the bond behavior between textile and concrete matrix is significant for the development of computational methods that analyze the textile reinforced concrete. The paper analyzes the bonding constitutive model of TRC and the bonding mechanism that the stress is transferred from fine concrete to textile, pointing out quadruple linear model can accurately reflect the bond behavior between fiber and concrete, illustrates the main influences on bond between the fine grained matrix and fabrics based on the pull-out test, the result reveals that with initial bond length increasing, the maximum pull force increases, and increasing concrete strength and improving workability of concrete matrix, epoxy resin impregnating and sand covering of textile as well as prestressing textile can increase the bond strength between textile and concrete. Finally the paper proposes that epoxy resin impregnating and 0.15 ~ 0.30mm sand covering of textile can be used as a practical method of improving bond properties in the engineering.


2012 ◽  
Vol 174-177 ◽  
pp. 993-998 ◽  
Author(s):  
Shi Yong Jiang ◽  
Yong Ye ◽  
Wei Fei

Through the pull-out test methods, the concrete strength、reinforcement diameter Basalt Fiber Reinforced Plastics Bars、the anchorage length、 stirrup rate and other factors on the bonding properties of the BFRP reinforced concrete is analyzed. The BFRP bars and reinforcing steel bars bonding properties is compared. BFRP reinforced concrete bond failure mode has two types .As the concrete strength increases, the bond strength of the BFRP reinforced concrete increased. With the increase BFRP bars diameter and shear lag relationship, the cohesive force of the BFRP reinforced concrete decrease accordingly. And the failure modes of the shape of the BFRP reinforcement concrete in BFRP bonding properties with a big impact for the specimens’ configuration stirrups on the ductility. When BFRP bars loading under the same load level, the end of the slip is greater than the free end slip.


2007 ◽  
Vol 13 (4) ◽  
pp. 317-323
Author(s):  
Juozas Valivonis ◽  
Tomas Skuturna

The article presents the analysis of the cracking moment and the strength of beams reinforced with external carbon fibre. Experimental research of beams strengthened in this way has been carried out. Three different methods of anchoring external reinforcement were applied to strengthen the beams. The influence of anchorage on the cracking moment and the strength of the beams has been defined. Design methods for defining the cracking moment and the strength have been presented. The design procedure for defining the cracking moment evaluates the curvilinear stress diagrams of concrete under tension and compression. The design procedure for defining the strength of the structures evaluates the stiffness of the contact between the carbon fibre and the concrete. The design results are provided. Comparative analysis of the experimental and the theoretical results has been performed.


2007 ◽  
Vol 13 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Juozas Valivonis ◽  
Tomas Skuturna

The article presents the analysis of the cracking moment and the strength of beams reinforced with external carbon fibre. Experimental research of beams strengthened in this way has been carried out. Three different methods of anchoring external reinforcement were applied to strengthen the beams. The influence of anchorage on the cracking moment and the strength of the beams has been defined. Design methods for defining the cracking moment and the strength have been presented. The design procedure for defining the cracking moment evaluates the curvilinear stress diagrams of concrete under tension and compression. The design procedure for defining the strength of the structures evaluates the stiffness of the contact between the carbon fibre and the concrete. The design results are provided. Comparative analysis of the experimental and the theoretical results has been performed.


2016 ◽  
Vol 20 (9) ◽  
pp. 1390-1405 ◽  
Author(s):  
Ahmed A Abouhussien ◽  
Assem AA Hassan

This article presents the results of an experimental investigation on the application of acoustic emission technique for monitoring the steel-to-concrete bond integrity of reinforced concrete structures. A series of direct pull-out tests were performed on 54 reinforced concrete unconfined prism samples with variable rebar diameter (10, 20, and 35 mm), embedded length (50, 100, and 200 mm), and concrete cover (20, 30, and 40 mm). The samples were tested under incrementally increasing monotonic loading while being continuously monitored via attached acoustic emission sensors. These sensors were utilized to acquire different acoustic emission signal parameters emitted throughout the tests until failure. Also, an acoustic emission intensity analysis was implemented on acoustic emission signal strength data to quantify the damage resulting from loss of bond in all tested specimens. This analysis employed the signal strength of all recorded acoustic emission hits to develop two additional parameters: historic index ( H ( t)) and severity ( Sr). The results of bond behavior, mode of failure, and free end slip were compared with the recorded acoustic emission data. The results showed that the cumulative number of hits, cumulative signal strength, H ( t), and Sr had a good correlation with different stages of bond damage from de-bonding/micro-cracking until bond splitting failure and bar slippage, which caused cover cracking or delamination. The analysis of cumulative signal strength and H ( t) curves enabled early identification of two progressive stages of bond degradation (micro-cracking and macro-cracking) and recognized the various modes of failure of the tested specimens. The variations of bar diameter, concrete cover, and embedded length yielded significant impacts on both the bond behavior and acoustic emission activities. The results also presented developed intensity classification charts, based on H ( t) and Sr, to assess the bond integrity and to quantify the bond deterioration (micro-cracking, macro-cracking, and rebar slip) in reinforced concrete structures.


Author(s):  
Mohammed A. Abed ◽  
Zaher Alkurdi ◽  
Ahmad Kheshfeh ◽  
Tamás Kovács ◽  
Salem Nehme

The bond-slip relationship between concrete and steel is significant in evaluating the nonlinear behavior of reinforced concrete structures. The force transmitted by the bond in reinforced concrete structures was studied numerically in high-strength, lightweight concrete with ribbed reinforcing steel bar or seven-wire strand, using ATENA 3D software. The first part of the study was a validation of the model based on the actual results of standardized pull-out tests using the software. Subsequently, the bond behavior was studied, where a four-point static bending test was modeled based on the real bond-slip relationship of the pull-out test. It was deduced that the ATENA 3D software can simulate the experimental tests and provide meaningful results. In addition, inferred from the numerical modeling, the maximum crack width and the mid-span deflection of the reinforced concrete beam increased when the bond stress between the concrete and the reinforcing steel bars was decreased. When a high amount of reinforcement (two strands) was used, concrete failure occurred before the strands yielded. However, further increase of the bond stress also decreased the maximum crack width and mid-span deflection. The failure occurred due to the increase in the strand yielding point by using one strand as a reinforcement of the beam.


Bamboo reinforced concrete is expected to be an alternative to steel reinforced concrete as a building material. Steel, when used for construction activities, is energy intensive and causes pollution. In this context, the use of bamboo, which is a fast growing, affordable and ecologically friendly solution; especially in a tropical country like India, is being considered as a suitable material for structural applications. It is potentially superior to steel in terms of its weight to strength ratio. However, the bond strength is a major concern for the bamboo to be a reinforcement in structural composites. The goal of this paper is to investigate the bonding properties of a newly developed bamboo-reinforcement composite in concrete, through pull-out tests. Various coatings are applied to the bamboo to determine the different bonding behaviours between the concrete and newly developed BRC. To improve the bonding at interfacial of bamboo concrete composite; easily applicable, adoptable and economical technology have been developed. The results of this study demonstrate that the bamboo-reinforcement composite develops adequate bonding with the concrete matrix with the hope that the newly developed material could contribute, on a large scale, to sustainable development.


Sign in / Sign up

Export Citation Format

Share Document