scholarly journals Bamboo Concrete Bond Strength

Bamboo reinforced concrete is expected to be an alternative to steel reinforced concrete as a building material. Steel, when used for construction activities, is energy intensive and causes pollution. In this context, the use of bamboo, which is a fast growing, affordable and ecologically friendly solution; especially in a tropical country like India, is being considered as a suitable material for structural applications. It is potentially superior to steel in terms of its weight to strength ratio. However, the bond strength is a major concern for the bamboo to be a reinforcement in structural composites. The goal of this paper is to investigate the bonding properties of a newly developed bamboo-reinforcement composite in concrete, through pull-out tests. Various coatings are applied to the bamboo to determine the different bonding behaviours between the concrete and newly developed BRC. To improve the bonding at interfacial of bamboo concrete composite; easily applicable, adoptable and economical technology have been developed. The results of this study demonstrate that the bamboo-reinforcement composite develops adequate bonding with the concrete matrix with the hope that the newly developed material could contribute, on a large scale, to sustainable development.

Author(s):  
Katarzyna Zdanowicz ◽  
Boso Schmidt ◽  
Hubert Naraniecki ◽  
Steffen Marx

<p>The bond behaviour of concrete specimens with carbon textile reinforcement was investigated in the presented research programme. Pull-out specimens were cast from self-compacting concrete with expansive admixtures and in this way chemical prestress was introduced. The aim of the research was to compare bond behaviour between prestressed specimens and non-prestressed control specimens. During pull-out tests, the pull-out force and notch opening were measured with a load cell and laser sensors. Further, bond - slip and pull-out force - crack width relationships were drawn and compared for prestressed and non-prestressed specimens. Chemically prestressed specimens reached 24% higher bond strength than non-prestressed ones. It can be therefore concluded, that chemical prestressing positively influences the bond behaviour of concrete with textile reinforcement and thus better utilisation of its properties can be provided.</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaolong Zhang ◽  
Bingchuan Duan ◽  
Chengzhi Wang ◽  
Duoyin Wang

In this study, a three-dimensional finite element model was established to simulate the dynamic response of a large-scale steel-reinforced concrete composite high-pile wharf with a rock-socketed steel sheath. The model is based on the second phase of the Chongqing Orchard Harbor structure project in conjunction with the project “Research on the mechanism of interface damage and energy dissipation of the structure of the large-scale steel-reinforced concrete composite high-pile wharf in inland waters.” The stiffness of frame wharf is studied from the perspective of modal and transient dynamic analysis of structural dynamics. The distribution of the low-order modal frequency is more uniform. With the increase of the order, the modal frequency of the structure shows a periodical jump. The overall stiffness of the frame structure is larger with the steel sheath, and the longitudinal stiffness is less than the transverse stiffness. Under the action of transverse impact load, the members and joints of the steel-concrete structure exhibit synchronous mechanical response characteristics in the time domain. The peak values of displacement and stress of the structural joints occur 0.05 s after the peak value of the load-time history, and the peak value of reverse response of force occurs at 2.3 s, which is markedly smaller than the peak value of the response of load direction. Reducing the local positional stiffness of the load point is beneficial to improve the stress of the entire structure. The weak links of the frame structure appear at the joints of the members. Because of the hoop action of the steel sheath, the stress of the reinforced concrete pile core is more uniform. The peak value of the equivalent stress of the steel sheath member is generally larger than that of the reinforced concrete pile core, and the stress is highly concentrated at the joints of the steel tube longitudinal and transverse braces.


2013 ◽  
Vol 351-352 ◽  
pp. 359-362 ◽  
Author(s):  
Xin Wang

This paper, the mechanics characteristic of T-shaped section steel reinforced concrete column under low period repeated loading by using large-scale finite element analysis software ABAQUS was analyzed, combined existing research, the influence of the performance of ductility under different steel ratio and axial compression ratio was studied, we concluded that the T-shaped section steel reinforced concrete column has the very good ductility performance, and put forward the axial compressive ratio limit under the different parameters, and to provide the reference for future research and application.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1977-1980
Author(s):  
Tao Zou ◽  
Yu Lai Han

It is known in the literature, at different temperatures bond strength bond between steel and concrete and relevant test data segment free end slip magnitude rarely, it is necessary to study this type of test, in order to more in-depth study of steel and variation between concrete bonding properties at different temperatures in order to verify different temperatures we derive between steel and concrete expressions are appropriate bond stress and slip. This test is primarily measured under different temperature conditions, reinforced concrete specimens under axial tension force central role, respectively, at the free end of the specimen and loading end bond segment relative slip steel and concrete at different temperatures . Because when the temperature reaches about 200 °C, the specimen began to appear on the adhesive debonding phenomenon, so this calculation is only done by experiments and theoretical consideration a temperature in the range of 20 °C to 190 °C.


2012 ◽  
Vol 174-177 ◽  
pp. 993-998 ◽  
Author(s):  
Shi Yong Jiang ◽  
Yong Ye ◽  
Wei Fei

Through the pull-out test methods, the concrete strength、reinforcement diameter Basalt Fiber Reinforced Plastics Bars、the anchorage length、 stirrup rate and other factors on the bonding properties of the BFRP reinforced concrete is analyzed. The BFRP bars and reinforcing steel bars bonding properties is compared. BFRP reinforced concrete bond failure mode has two types .As the concrete strength increases, the bond strength of the BFRP reinforced concrete increased. With the increase BFRP bars diameter and shear lag relationship, the cohesive force of the BFRP reinforced concrete decrease accordingly. And the failure modes of the shape of the BFRP reinforcement concrete in BFRP bonding properties with a big impact for the specimens’ configuration stirrups on the ductility. When BFRP bars loading under the same load level, the end of the slip is greater than the free end slip.


The flexural behavior of concrete beams reinforced with bamboo was studied experimentally. Bamboo was used as the main reinforcement with different bonding materials in place of steel. A nominal mix of M20 grade concrete was adopted for the beam design. The Bamboo surface was treated with common binding materials like Araldite and Bitumen. Araldite and Bitumen are good binding materials used to connect materials like steel, carbon and many different materials. Two specimens were casted with bitumen coating, two specimens were coated with araldite, two specimens were casted without any binder coating and a specimen was casted using normal steel reinforcement. Beams were casted with bamboo reinforcement and cured for 28 days. Deflection and flexural behavior of the beams were monitored. The test results imply that araldite coating in concrete beams with bamboo reinforcement increased the flexural strength to that of bamboo reinforced concrete using bitumen which is lesser strength to that of steel reinforced concrete beam.


2016 ◽  
Vol 53 (2) ◽  
pp. 917-945 ◽  
Author(s):  
Wei-Hua Wang ◽  
Lin-Hai Han ◽  
Qing-Hua Tan ◽  
Zhong Tao

2021 ◽  
Vol 30 (3) ◽  
Author(s):  
Kexin Zhang

The pull-out test of the bar and PUC is carried out in this paper, the effects of protective layer thickness, reinforcement anchorage length, diameter and shape of reinforcement on bonding properties were studied. The results show that the bond strength between reinforcement and PUC material increases with the increase of the thickness of the protective layer, but decreases with the increase of the anchorage length and diameter of reinforcement. The bond strength of bare round steel is significantly lower than that of ribbed steel, and the maximum bond strength is about 47.4% of ribbed steel. By analyzing the bond slip curve obtained from the pull-out test, the stress process of bond anchorage between reinforcement bar and PUC material is mainly summarized into three stages: the rising stage, the falling stage and the residual stage. The characteristics of the curve, the stress process and the failure mode of specimen at each stage are analyzed.


Sign in / Sign up

Export Citation Format

Share Document