Computing Method Investigation and Verification of Gas-Solid Combustion in Magnesium-Aluminum Based Propellant Ducted Rocket

2012 ◽  
Vol 503-504 ◽  
pp. 490-493
Author(s):  
Wei Wang ◽  
Jiang Li ◽  
Ke Zhang ◽  
Yang Liu

The combustion mechanism, which consisting of 22 species and 23 reaction equations, and three discrete models such as inertia, combusting, modification droplet, are employed for the investigation of gas-solid combustion in magnesium-aluminum based propellant ducted rocket based on thermal performance calculation. And path lines, temperature distribution, sediments are discussed after the computing method is validated by direct-connect experimentation and the flow field information, which obtained by numerical method and coincided with currently conclusions. The results indicated that the proposed method is reliable and practicable.

2014 ◽  
Vol 8 (1) ◽  
pp. 636-642 ◽  
Author(s):  
Liu Shui-Chang ◽  
Li Li-Fu ◽  
Zhang Yong

In simulation of the heat transfer between radiator and air flow field, the adoption of the radiator full-size model containing its core body structure with small feature sizes would require huge storage space and not be economical. In view of this question, based on the coupling of multi-scale models simulations, a calculation method of radiator performance is proposed in this paper the reliability of which is verified by an experiment test. Subsequently, the influence on the radiators’ thermal performance of the layout of the parts in front of the radiators is analyzed. Lastly, the layout of the front parts is modified to enhance the radiators’ thermal performance. The investigation results indicate that: the radiators’ thermal performance calculation method based on simulations coupling of radiator multi-scale models considers the influences of air-side flow field distribution and the core body structure details; the error of the calculating values from the method is less than 5%, and the method is reliable; when the heat source parts in front of the radiators are situated right in front of the rear fan channel, the radiators thermal performance is better; the radiators cooling power increases 19.3kW after layout modification of the front heat resource parts.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 417
Author(s):  
Xingcong Lv ◽  
Xiaolong Hao ◽  
Rongxian Ou ◽  
Tao Liu ◽  
Chuigen Guo ◽  
...  

The rheological properties of wood–plastic composites (WPCs) with different wood fiber contents were investigated using a rotational rheometer under low shear rates. The flow field information was analyzed and simulated by Ansys Polyflow software. The results showed that the WPCs with different wood fiber contents behaved as typical power-law fluids. A higher wood fiber content increased the shear thinning ability and pseudoplasticity of the WPCs. The pressure, velocity, shear rate, and viscosity distributions of the WPC during extrusion could be predicted by computational fluid dynamics (CFD) Ansys Polyflow software to explore the effects of different components on the flow field of WPCs.


Author(s):  
Johannes Gradl ◽  
Florian Schwertfirm ◽  
Hans-Christoph Schwarzer ◽  
Hans-Joachim Schmid ◽  
Michael Manhart ◽  
...  

Mixing and consequently fluid dynamic is a key parameter to tailor the particle size distribution (PSD) in nanoparticle precipitation. Due to fast and intensive mixing a static T-mixer configuration is capable for synthesizing continuously nanoparticles. The flow and concentration field of the applied mixer is investigated experimentally at different flow rates by Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF). Due to the PIV measurements the flow field in the mixer was characterized qualitatively and the mixing process itself is quantified by the subsequent LIF-measurements. A special feature of the LIF set up is to detect structures in the flow field, which are smaller than the Batchelor length. Thereby a detailed insight into the mixing process in a static T-Mixer is given. In this study a CFD-based approach using Direct Numerical Simulation (DNS) in combination with the solid formation kinetics solving population balance equations (PBE) is applied, using barium sulfate as modeling material. A Lagrangian Particle Tracking strategy is used to couple the flow field information with a micro mixing model and with the classical theory of nucleation. We found that the DNS-PBE approach including macro and micro mixing, combined with the population balance is capable of predicting the full PSD in nanoparticle precipitation for different operating parameters. Additionally to the resulting PSD, this approach delivers a 3D-information about all running subprocesses in the mixer, i.e. supersaturation built-up or nucleation, which is visualized for different process variables.


2013 ◽  
Vol 483 ◽  
pp. 587-593
Author(s):  
Hong Kai Liao ◽  
Yue Xi Yu ◽  
Yan Ling Wu ◽  
Wei Zhong

Thermal performance calculation is the core task of designing power station boiler. By abstracting generalized components and generalized fluid nodes, and defining the process unit and process section at the logic level, the universal physical model of boiler was built in a particular form of flowsheet. Meanwhile, a sequential modular approach was proposed as the main algorithm for boiler thermal calculation based on process system steady-state simulation theory. Two key problems in the algorithm, i.e., module calculations and the logics of calling the modules calculations were explained. Finally, a practically developed system BESS, which has excellent flexibility and extensibility was presented. It turns out that the model and algorithm can be successfully employed in developing the general-purpose software for boiler thermal calculation.


2020 ◽  
Vol 190 ◽  
pp. 00022
Author(s):  
Lia Hamanda ◽  
Gunawan Nugroho

The aim of this work is to study a mathematical modelling and simulation for predicting the thermal performance heat-pipe evacuated a solar collector for water heater, which was considered the temperature distribution along the tube axis and radius. This model used to help in studying the dynamic behaviour of the system design and the effect of influential parameter on the water heater process. The result showed that water heating is affected by the surface of collector, metrological conditions such as solar radiation and outdoor temperature, even the thermal performance of the collector.


1991 ◽  
Vol 113 (3) ◽  
pp. 627-634 ◽  
Author(s):  
K. Vafai ◽  
J. Ettefagh

The present work centers around a numerical three-dimensional transient investigation of the effects of axial convection on flow and temperature fields inside an open-ended annulus. The transient behavior of the flow field through the formation of a three-dimensional flow field and its subsequent effect on the temperature distribution at different axial locations within the annulus were analyzed by both finite difference and finite element methods. The results show that the axial convection has a distinctly different influence on the temperature and velocity fields. It is found that in the midportion of the annulus a two-dimensional assumption with respect to the temperature distribution can lead to satisfactory results for Ra<10,000. However, such an assumption is improper with respect to the flow field. Furthermore, it is shown that generally the errors for a two-dimensional assumption in the midportion of the annulus are less at earlier times (t<50Δt) during the transient development of the flow and temperature fields.


Sign in / Sign up

Export Citation Format

Share Document