The Effect of Morphology and Distribution of Sulfides on Mechanical Properties and Fatigue Life of Non-Quenched and Tempered Steel

2008 ◽  
Vol 51 ◽  
pp. 11-20
Author(s):  
Ming Tu Ma ◽  
Guo Zhong Li ◽  
Zhi Gang Li ◽  
Hong Zhou Lu

The effect of morphology and distribution of sulfides on tensile, impact and bending fatigue properties of non-quenched and tempered steel 49MnVS3 has been investigated in this paper. Microscopic structure and morphology of sulfides are observed, and impact fracture and fatigue fracture have been analyzed by SEM. The results show that the morphology of sulfides is mostly strip and distributes in ferrite, which affects mechanical properties and fatigue life. The length direction of sulfide strip is parallel to the rolling direction of steel. When the length of sulfide is short relatively and is approximate to the shape of particles. The impact properties and bending fatigue performance of 49MnVS3 are higher. Under those conditions, there are more ductile characteristics in their impact fracture and the fatigue fracture. The reasons for the effect of sulfide morphology on the mechanical and fatigue properties are explained.

2012 ◽  
Vol 726 ◽  
pp. 133-140 ◽  
Author(s):  
Stanisław Mroziński ◽  
Michał Piotrowski

The paper assessed the impact of the laser welding speed on the strength and fatigue properties of the aluminum layer found in multilayer pipes. The conducted experiment has shown that during the adjustment of the welding speed one has to take into account not only the results of static tests, but also the results of fatigue tests. The impact of the welding speed on fatigue life depends on the level of stress max. This level is slight in the area of the biggest stresses and increases along with the decrease in stresses.


2012 ◽  
Vol 445 ◽  
pp. 195-200
Author(s):  
Murat Aydin ◽  
Yakup Heyal

The mechanical properties mainly tensile properties, impact toughness and high-cycle fatigue properties, of two-phase Al-20Zn alloy subjected to severe plastic deformation (SPD) via equal-channel angular extrusion (ECAE) using route A up to 2 passes were studied. The ECAE almost completely eliminated as-cast dendritic microstructure including casting defects such as micro porosities. A refined microstructure consisting of elongated micro constituents, α and α+η eutectic phases, formed after ECAE via route A. As a result of this microstructural change, mechanical properties mainly the impact toughness and fatigue performance of the as-cast Al-20Zn alloy increased significantly through the ECAE. The rates of increase in fatigue endurance limit are approximately 74 % after one pass and 89 % after two passes while the increase in impact toughness is 122 %. Also the yield and tensile strengths of the alloy increase with ECAE. However, no considerable change occurred in hardness and percentage elongation of the alloy. It was also observed that the ECAE changed the nature of the fatigue fracture characteristics of the as-cast Al-20Zn alloy.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2064 ◽  
Author(s):  
Stanisław Kuciel ◽  
Patrycja Bazan ◽  
Aneta Liber-Kneć ◽  
Aneta Gądek-Moszczak

The paper evaluated the possibility of potential reinforcing of poly(oxymethylene) (POM) by glass fiber and the influence of fiberglass addition on mechanical properties under dynamic load. Four types of composites with glass fiber and another four with carbon fiber were produced. The fiber content ranged from 5% to 40% by weight. In the experimental part, the basic mechanical and fatigue properties of POM-based composites were determined. The impact of water absorption was also investigated. The influence of fiber geometry on the mechanical behavior of fiber-reinforced composites of various diameters was determined. To refer to the effects of reinforcement and determine the features of the structure scanning electron microscopy images were taken. The results showed that the addition of up to 10 wt %. fiberglass increases the tensile properties and impact strength more than twice, the ability to absorb energy also increases in relation to neat poly(oxymethylene). Fiber geometry also has a significant impact on the mechanical properties. The study of the mechanical properties at dynamic loads over time suggests that composites filled with a smaller fiber diameter have better fatigue properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hongshuai Gao ◽  
Quansheng Sun

There are many diseases in the deck pavement of long-span steel bridges under the action of vehicles, rainwater, and freezing. It is necessary to study a new type of pavement material with high waterproof property, light weight, and high bonding performance for steel deck pavement. Polyurethane cement composite (PUC) can be used for steel deck pavement. In order to find out the temperature effect on fatigue properties of PUC, the four-point bending fatigue test was carried out at different temperatures. In this paper, the optimum mix ratio of PUC was selected by compressive and flexural tests, and then the bending fatigue test was conducted under strain control mode. Under temperature and external force coupling condition, a method for predicting fatigue life of PUC is proposed by the combination of theoretical deduction and experimental research. The results show that the proposed formula can effectively describe the fatigue life and fatigue limit of PUC. Finally, compared with three different asphalt mixtures for steel deck pavement, it is found that the fatigue performance of polyurethane cement is better than that of asphalt mixture.


2008 ◽  
Vol 385-387 ◽  
pp. 849-852 ◽  
Author(s):  
Pasquale Cavaliere ◽  
Francesco W. Panella ◽  
Antonio Squillace

Al-Li alloys are characterized by a strong anisotropy in mechanical properties and microstructure with respect to the rolling direction. Plates of 2198 Al-Li alloy were friction stir welded by employing maximum rotation speed: 1000 rev/min and welding speed of 80 mm/min, both in parallel and orthogonal directions with respect to the rolling one. The joints mechanical properties were evaluated by means of tensile tests at room temperature. In addition, fatigue tests performed with a resonant electro-mechanical testing machine under constant amplitude control up to 250 Hz loading, were conducted in axial control mode with R(σmin/σmax)=0.33, for all the welding and rotating speed conditions. The fatigue crack propagation experiments were performed by employing single edge notched specimens.With the aim to characterize the weld performances, both the microstructure evolution at jointed cross sections, related to the welding variables, and the fractured surfaces were respectively analyzed by means of optical and scanning electron microscopy.


2008 ◽  
Vol 57 ◽  
pp. 235-240 ◽  
Author(s):  
Yannick Baril ◽  
Vladimir Brailovski ◽  
Patrick Terriault

Superelastic 0.1mm diameter Ti-Ni filaments are used to manufacture braided orthopedic cable for bone fixation. Biomechanical conditions for this application generally have a cyclic nature, and therefore it becomes important to evaluate the influence of the installation (mean) strain on the fatigue life of these filaments. Uniaxial tension cyclic testing of Ti-Ni filaments is performed in a water bath at 37°C with a 2Hz frequency of to 100 000 cycles. Strain-controlled testing conditions are as follows: alternating strain magnitude varies between 0.64 and 3.64% with mean strain range between 1.32 and 7.1%. Based on the premises that the minimum strain should be high enough to prevent any loss of tension in the tested specimen and that the maximum strain should not bring the specimen to failure during the first loading cycle, the total strain magnitude is encompassed between 0.68 and 8.94%. The results obtained provide a better understanding of the impact mean strain has on the fatigue life of superelastic Ti-Ni alloys.


2011 ◽  
Vol 674 ◽  
pp. 213-218 ◽  
Author(s):  
Hisaaki Tobushi ◽  
K. Kitamura ◽  
Yukiharu Yoshimi ◽  
K. Miyamoto ◽  
K. Mitsui

In order to develop a brain spatula or a brain retractor made of a shape memory alloy (SMA), the bending characteristics of the brain spatula of TiNi SMA made by the precision casting were discussed based on the tensile deformation properties of the existing copper and the TiNi rolled-SMA. The fatigue properties of both materials were also investigated by the plane-bending fatigue test. The results obtained can be summarized as follows. (1) The modulus of elasticity and the yield stress for the cast and rolled SMAs are lower than those for the copper. Therefore, the conventional rolled-SMA spatula and the new cast-SMA spatula can be bent easily compared to the existing copper-brain spatula. (2) With respect to the alternating- and pulsating-plane bending fatigue, the fatigue life of both the copper and the SMAs in the region of low-cycle fatigue is expressed by a power function of the maximum bending strain. The fatigue life of the conventional rolled SMA and the new cast SMA is longer than that of the existing copper. The fatigue life of the new cast and rolled SMAs in the pulsating-plane bending is longer than that in the alternating-plane bending. (3) The fatigue life of the rolled-SMA and the cast SMA for alternating- and pulsating-plane bendings can be expressed by the unified relationship with a power function of the dissipated work.


Sign in / Sign up

Export Citation Format

Share Document