The Impact of the Laser Welding Speed on the Mechanical Properties of Joints in Multilayer Pipes

2012 ◽  
Vol 726 ◽  
pp. 133-140 ◽  
Author(s):  
Stanisław Mroziński ◽  
Michał Piotrowski

The paper assessed the impact of the laser welding speed on the strength and fatigue properties of the aluminum layer found in multilayer pipes. The conducted experiment has shown that during the adjustment of the welding speed one has to take into account not only the results of static tests, but also the results of fatigue tests. The impact of the welding speed on fatigue life depends on the level of stress max. This level is slight in the area of the biggest stresses and increases along with the decrease in stresses.

2008 ◽  
Vol 51 ◽  
pp. 11-20
Author(s):  
Ming Tu Ma ◽  
Guo Zhong Li ◽  
Zhi Gang Li ◽  
Hong Zhou Lu

The effect of morphology and distribution of sulfides on tensile, impact and bending fatigue properties of non-quenched and tempered steel 49MnVS3 has been investigated in this paper. Microscopic structure and morphology of sulfides are observed, and impact fracture and fatigue fracture have been analyzed by SEM. The results show that the morphology of sulfides is mostly strip and distributes in ferrite, which affects mechanical properties and fatigue life. The length direction of sulfide strip is parallel to the rolling direction of steel. When the length of sulfide is short relatively and is approximate to the shape of particles. The impact properties and bending fatigue performance of 49MnVS3 are higher. Under those conditions, there are more ductile characteristics in their impact fracture and the fatigue fracture. The reasons for the effect of sulfide morphology on the mechanical and fatigue properties are explained.


2012 ◽  
Vol 445 ◽  
pp. 195-200
Author(s):  
Murat Aydin ◽  
Yakup Heyal

The mechanical properties mainly tensile properties, impact toughness and high-cycle fatigue properties, of two-phase Al-20Zn alloy subjected to severe plastic deformation (SPD) via equal-channel angular extrusion (ECAE) using route A up to 2 passes were studied. The ECAE almost completely eliminated as-cast dendritic microstructure including casting defects such as micro porosities. A refined microstructure consisting of elongated micro constituents, α and α+η eutectic phases, formed after ECAE via route A. As a result of this microstructural change, mechanical properties mainly the impact toughness and fatigue performance of the as-cast Al-20Zn alloy increased significantly through the ECAE. The rates of increase in fatigue endurance limit are approximately 74 % after one pass and 89 % after two passes while the increase in impact toughness is 122 %. Also the yield and tensile strengths of the alloy increase with ECAE. However, no considerable change occurred in hardness and percentage elongation of the alloy. It was also observed that the ECAE changed the nature of the fatigue fracture characteristics of the as-cast Al-20Zn alloy.


2016 ◽  
Vol 62 (1) ◽  
pp. 83-98 ◽  
Author(s):  
A. Szydło ◽  
K. Malicki

Abstract The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings’ fatigue life based on the results of quick and relatively easy static tests.


2014 ◽  
Vol 598 ◽  
pp. 141-146
Author(s):  
Adam Lipski ◽  
Zbigniew Lis

The aim of this paper is to assess the impact of the rivet hole sizing process on the fatigue life based on the example of the structural connections characteristic for riveted joints used in aviation industry. Test specimens reflected the structural connection consisting in a riveted lap joint of an airplane plating stiffened with a T-bar. Connected plates and the T-bar are made of D16CzATW aluminum alloy. 3 mm diameter oval head solid rivets for aviation-related purposes were made of PA24 aluminum. During fatigue tests, individual specimens with non-sized holes and with sized holes were subjected to uniaxial, one-sided, fixed-amplitude loading (R = 0). It can be concluded from the fatigue life comparison that introduction of an additional operation in the riveting process, i.e. the hole sizing, results in significant, about two-fold increase of the fatigue life of the riveted structural connection, even at slight sizing degree. The difference of the specimen damage nature was observed between specimens with sized and non-sized holes.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


2021 ◽  
Vol 4 (12(112)) ◽  
pp. 47-52
Author(s):  
Raad Mohammed Abed ◽  
Ali Yousuf Khenyab ◽  
Hussain Jasim M. Alalkawi

Aluminum is expected to remain the core material for many critical applications such as aircraft and automobiles. This is due to the high resistance to different environmental conditions, desired and manageable mechanical properties, as well as high fatigue resistance. Aluminum nanocomposites such as AA6061/Al2O3 can be made in many ways using a liquid metallurgy method. The main challenges for this method in the production of nanocomposites are the difficulties of achieving a uniform distribution of reinforcing materials and possible chemical reactions between the reinforcing material and the matrix. For structural applications exclusive to aerospace sectors. The growing cost-effective nanocomposites mass production technology with essential operational and geometric flexibility is a big challenge all the time. Each method of preparing AA6061/Al2O3 nanocomposites can provide different mechanical properties. In the present study, nine nanocomposites were prepared at three stirring temperatures (800, 850, and 900 °C) with the level of Al2O3 addition of 0, 5, 7, and 9 wt %. The results of tensile, hardness and fatigue tests revealed that the composite including 9 wt % Al2O3 with 850 °C stirring temperatures has the best properties. It was also revealed that the 850 °C stirring temperature (ST) with 9 wt % Al2O3 composite provide an increase in tensile strength, VHN and reduction in ductility by 20 %, 16 % and 36.8 % respectively, compared to zero-nano. Also, the fatigue life at the 90 MPa stress level increased by 17.4 % in comparison with 9 wt % nanocomposite at 800 °C (ST). Uniform distributions were observed for all nine microstructure compositions.


2016 ◽  
Vol 254 ◽  
pp. 33-42
Author(s):  
Ioan Catalin Mon ◽  
Mircea Horia Tierean ◽  
Eugen Cicala ◽  
Michel Pilloz ◽  
Iryna Tomashchuk ◽  
...  

This paper studies the ductile iron (DI) weldability using laser welding. For performing an Yb:YAG continuous laser was used, with a maximum power of 6 kW. The parametrical window power (P) - welding speed (S) was explored by carrying out the fusion lines on ductile iron plates without preheating, to determinate areas of weldability (complete penetration, correct geometry) to allow further characterization. The criteria for selection of focus areas were the geometry of the fusion lines and the absence of the welding defects. The unsatisfactory domains were characterized by: collapse of the melted metal, incomplete penetration, low fusion lines quality (geometry, compactness). In present study, several values of power and welding speed have been tested to identify their influence on geometry, compactness of the joints and mechanical properties. As result, the power-welding speed diagram for feasible domains of laser welding was generated.


2021 ◽  
Vol 1035 ◽  
pp. 292-296
Author(s):  
Zi Chao Peng ◽  
Jun Ying Sheng ◽  
Xu Qing Wang ◽  
Yue Tang

Low cycle fatigue (LCF) properties of a powder metallurgy(PM) nickel base superalloy FGH720Li were systematically studied in this work, including smooth LCF and notched LCF tested at various temperatures and different stress. The relationship between the fatigue life and applied stress was analyzed both for smooth fatigue and notch fatigue tests. The effects of loading frequency and stress ratio on LCF behavior were also studied. As an important influencing factor of the fatigue life in powder metallurgy superalloy, the effect of inclusions on LCF life was also investigated. The results showed that the fatigue properties of FGH720Li alloy was excellent, when tested at the temperature of 450°C and applied stress of 1230MPa, the fatigue life could exceed 5×104 cycles. When tested at 650°C and 1150MPa, the average fatigue life was still beyond 2×105 cycles.


Author(s):  
Seyed M. Allameh ◽  
Avery Lenihan ◽  
Roger Miller ◽  
Hadi Allameh

Abstract Additive manufacturing technology has matured enough to produce real industrial components. A newer method of 3D printing is the deposition of molten metal beads using a MIG weld torch. This involves a 3D printer equipped with a MIG torch layering the metals in desired shapes. It allows the fabrication of components made of MIG weld wires, currently available from various elements including Cu, Al, steel and alloys. Some of these structures made by 3D welding will have applications in critical load bearing conditions. The reliability of such components will be vital in applications where human lives are at stake. Tensile tests are conducted to verify the required strength of the fabricated parts which will undergo monotonic loading; however, fatigue tests are required for cases where cyclic loading will take place. Conventional tensile and fatigue testing requires macro-scale samples. With MIG welding, it is possible to make thin-walled structures. Fatigue testing on samples extracted from thin walls is made possible by microtesting. This study is focused on the mechanical properties of 3D welded structures made from MIG welding wires. Our earlier results showed orientation dependence of mechanical properties in 3D welded structures. They also showed the effect of substrates in expression of the orientation dependence. Welding on metal substrate produces weld beads that are harder at the substrate interfacial area. However, for structures welded on ceramics, the opposite is true. They exhibit a softer substrate interfacial area and a relatively harder top. Our newer results show fatigue properties of structures made by 3D welding. Microsamples measuring 0.2 mm × 0.2 mm × 1.0 mm were extracted from metal beads using a CNC mill along with an EDM. The contours of the samples were machined by milling and the back side was cut by electro discharge machining. Specimens were then polished to the desired size and mounted in the grippers of an E1000 Instron load frame. WaveMatrix® application software from Instron was used to control the machine and to obtain testing data. Fatigue tests were performed, and life cycles were determined for various stress levels up to over 5 million cycles. The preliminary results of tensile tests of these samples show strength levels that are comparable to those of parent metal, in the range of 600–950MPa. Results of fatigue tests show high fatigue lives associated with relatively high stresses. The preliminary results will be presented and the implications of the use of 3D welded rebar in 3D printing of reinforced concrete structures will be discussed.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2064 ◽  
Author(s):  
Stanisław Kuciel ◽  
Patrycja Bazan ◽  
Aneta Liber-Kneć ◽  
Aneta Gądek-Moszczak

The paper evaluated the possibility of potential reinforcing of poly(oxymethylene) (POM) by glass fiber and the influence of fiberglass addition on mechanical properties under dynamic load. Four types of composites with glass fiber and another four with carbon fiber were produced. The fiber content ranged from 5% to 40% by weight. In the experimental part, the basic mechanical and fatigue properties of POM-based composites were determined. The impact of water absorption was also investigated. The influence of fiber geometry on the mechanical behavior of fiber-reinforced composites of various diameters was determined. To refer to the effects of reinforcement and determine the features of the structure scanning electron microscopy images were taken. The results showed that the addition of up to 10 wt %. fiberglass increases the tensile properties and impact strength more than twice, the ability to absorb energy also increases in relation to neat poly(oxymethylene). Fiber geometry also has a significant impact on the mechanical properties. The study of the mechanical properties at dynamic loads over time suggests that composites filled with a smaller fiber diameter have better fatigue properties.


Sign in / Sign up

Export Citation Format

Share Document