Fatigue Properties of Superelastic Ti-Ni Filaments Used in Braided Cables for Bone Fixation

2008 ◽  
Vol 57 ◽  
pp. 235-240 ◽  
Author(s):  
Yannick Baril ◽  
Vladimir Brailovski ◽  
Patrick Terriault

Superelastic 0.1mm diameter Ti-Ni filaments are used to manufacture braided orthopedic cable for bone fixation. Biomechanical conditions for this application generally have a cyclic nature, and therefore it becomes important to evaluate the influence of the installation (mean) strain on the fatigue life of these filaments. Uniaxial tension cyclic testing of Ti-Ni filaments is performed in a water bath at 37°C with a 2Hz frequency of to 100 000 cycles. Strain-controlled testing conditions are as follows: alternating strain magnitude varies between 0.64 and 3.64% with mean strain range between 1.32 and 7.1%. Based on the premises that the minimum strain should be high enough to prevent any loss of tension in the tested specimen and that the maximum strain should not bring the specimen to failure during the first loading cycle, the total strain magnitude is encompassed between 0.68 and 8.94%. The results obtained provide a better understanding of the impact mean strain has on the fatigue life of superelastic Ti-Ni alloys.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2738
Author(s):  
Roland Pawliczek ◽  
Tadeusz Lagoda

The literature in the area of material fatigue indicates that the fatigue properties may change with the number of cycles. Researchers recommend taking this into account in fatigue life calculation algorithms. The results of simulation research presented in this paper relate to an algorithm for estimating the fatigue life of specimens subjected to block loading with a nonzero mean value. The problem of block loads using a novel calculation model is presented in this paper. The model takes into account the change in stress–strain curve parameters caused by mean strain. Simulation tests were performed for generated triangular waveforms of strains, where load blocks with changed mean strain values were applied. During the analysis, the degree of fatigue damage was compared. The results of calculations obtained for standard values of stress–strain parameters (for symmetric loads) and those determined, taking into account changes in the curve parameters, are compared and presented in this paper. It is shown that by neglecting the effect of the mean strain value on the K′ and n′ parameters and by considering only the parameters of the cyclic deformation curve for εm = 0 (symmetric loads), the ratio of the total degree of fatigue damage varies from 10% for εa = 0.2% to 3.5% for εa = 0.6%. The largest differences in the calculation for ratios of the partial degrees of fatigue damage were observed in relation to the reference case for the sequence of block n3, where εm = 0.4%. The simulation results show that higher mean strains change the properties of the material, and in such cases, it is necessary to take into account the influence of the mean value on the material response under block loads.



Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Matthias Bruchhausen ◽  
Gintautas Dundulis ◽  
Alec McLennan ◽  
Sergio Arrieta ◽  
Tim Austin ◽  
...  

A substantial amount of research effort has been applied to the field of environmentally assisted fatigue (EAF) due to the requirement to account for the EAF behaviour of metals for existing and new build nuclear power plants. We present the results of the European project INcreasing Safety in NPPs by Covering Gaps in Environmental Fatigue Assessment (INCEFA-PLUS), during which the sensitivities of strain range, environment, surface roughness, mean strain and hold times, as well as their interactions on the fatigue life of austenitic steels has been characterized. The project included a test campaign, during which more than 250 fatigue tests were performed. The tests did not reveal a significant effect of mean strain or hold time on fatigue life. An empirical model describing the fatigue life as a function of strain rate, environment and surface roughness is developed. There is evidence for statistically significant interaction effects between surface roughness and the environment, as well as between surface roughness and strain range. However, their impact on fatigue life is so small that they are not practically relevant and can in most cases be neglected. Reducing the environmental impact on fatigue life by modifying the temperature or strain rate leads to an increase of the fatigue life in agreement with predictions based on NUREG/CR-6909. A limited sub-programme on the sensitivity of hold times at elevated temperature at zero force conditions and at elevated temperature did not show the beneficial effect on fatigue life found in another study.



2008 ◽  
Vol 51 ◽  
pp. 11-20
Author(s):  
Ming Tu Ma ◽  
Guo Zhong Li ◽  
Zhi Gang Li ◽  
Hong Zhou Lu

The effect of morphology and distribution of sulfides on tensile, impact and bending fatigue properties of non-quenched and tempered steel 49MnVS3 has been investigated in this paper. Microscopic structure and morphology of sulfides are observed, and impact fracture and fatigue fracture have been analyzed by SEM. The results show that the morphology of sulfides is mostly strip and distributes in ferrite, which affects mechanical properties and fatigue life. The length direction of sulfide strip is parallel to the rolling direction of steel. When the length of sulfide is short relatively and is approximate to the shape of particles. The impact properties and bending fatigue performance of 49MnVS3 are higher. Under those conditions, there are more ductile characteristics in their impact fracture and the fatigue fracture. The reasons for the effect of sulfide morphology on the mechanical and fatigue properties are explained.



2007 ◽  
Vol 353-358 ◽  
pp. 54-57
Author(s):  
Bo Lin He ◽  
Ying Xia Yu ◽  
Er Yu Shao

The effect of undissolved ferrite amount on impact fatigue properties and failure mechanism were studied by using 42CrMo steel with subcritical quenching process The amount of undissolved ferrite were 0%, 10% and 15%, respectively. The experimental results show that the existence of undissolved ferrite can not only change the microstructure, but also increase the impact fatigue life The impact fatigue life elongates with increasing of amounts of undissolved ferrite The grain can be fined by using subcritical quenching process and the area of phase boundaries can also be greatly increased because of undissolved spheroidal carbide. The martensite and carbide form can also be changed by using subcritical quenching process The stress relaxation due to the moving of dislocations inside the ferrite and the promotion of strength due to occurring of plastic deformation and the enwinded dislocations are main reasons of improving the impact fatigue life. The impact fatigue life elongates with the increase of amounts of undissolved ferrite before the amount of undissolved ferrite reaches 10%. Under the experiment conditions, when the amount of undissolved ferrite is 10%, the impact fatigue life will be the longest.



2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Tomasz Ślęzak

Due to growing requirements connected with the utilization of advanced structures, nowadays the modern design processes are developed. One of the crucial issues considered in these processes is proper design of the joints against fatigue in order to fulfill a stated life of operation. In this study, the method of fatigue life prediction based on the criterion of permissible strain range in the notch root is presented. An engaged simplified model of fatigue life prediction was previously developed for mild and carbon steels. The evaluation made during the research has proven that this method can also be used for S960QL high-strength steel characterized by entirely different properties and structure. A considered theoretical model demonstrates satisfactory correlation with experimental data and safely describes the fatigue life of weldments. Furthermore, the predicted fatigue life of studied steel without welds shows great comparability with experimental data. The limit value of the strain range in the notch root was estimated. Below this value of strain, the fatigue life of welded joints is infinite, theoretically. Finally, the impact of the surface imperfections on the fatigue crack initiation was revealed. For paternal material, the origins of cracking were discovered at the places of nonmetallic scale particles. In welded joints, the fatigue cracks initiated at the whole length of the fusion line.



2017 ◽  
Vol 62 (4) ◽  
pp. 2349-2353
Author(s):  
J. Okrajni ◽  
A. Marek

AbstractThe study focuses on the problem of determination of low-cycle fatigue properties for the chosen group of creep-resistant steels used in the power and chemical industries. It tries to find the parameter which would describe well the fatigue life and take into account mechanical loads and temperature. The results of LCF tests have been presented in the paper. New parameter P has been introduced. This parameter joins a plastic strain range, a stress range and temperature. The fatigue life has been predicted versus parameter P. The comparison of the predicted and observed values of fatigue life shows the agreement between these values. The method of fatigue life prediction formulated in this way is expected to describe the behavior of materials under thermo-mechanical fatigue.



Author(s):  
Masayuki Kamaya

The influence of mean strain on fatigue life was investigated for Type 316 stainless steel at room temperature in ambient environment. Two types of mean strain were simulated in the fatigue tests: constant and increasing (ratcheting) mean strains. In order to apply the constant mean strain, prestraining was induced prior to fatigue tests. Although the stress amplitudes became larger due to the prestraining, fatigue lives were almost the same as those obtained using non-prestrained specimens for the same strain range. Change in the maximum peak stress and stress amplitude due to the prestraining had little influence on the fatigue life. It was shown that the mean strain showed little influence on the fatigue life under the same strain range. The ratcheting mean strain was observed during the fatigue tests under mean stress. The fatigue life was reduced by applying the mean stress for the same strain range. The degree of the reduction was increased with the magnitude of the ratcheting mean strain. It was deduced that the increasing mean strain enhanced the crack mouth opening and increased the effective strain range. It was concluded that the ratcheting mean strain reduced the fatigue life for the same strain range, and the reduction in fatigue life could be predicted conservatively by assuming the crack mouth was never closed during the fatigue tests.



2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Minghong Jian ◽  
Sinan Su ◽  
Sa'd Hamasha ◽  
Mohammad M. Hamasha ◽  
Atif Alkhazali

Abstract The reliability of solder joints plays a critical role in electronic assemblies. SnAgCu solder alloys with doped elements such as Bi and Sb is one of the candidates for high reliability applications. However, the mechanical and fatigue properties of the actual solder joint structure have not been studied for these new alloys. In this paper, a cyclic fatigue test was conducted on individual real solder joints of different alloys, including SnAgCu, SnCu–Bi, SnAgCu–Bi, and SnAgCu–BiSb. The fatigue property of those solder joints was analyzed based on the characteristic fatigue life and stress–strain, hysteresis, loops. The results show that solder joints with both Ag and Bi content have a better fatigue resistance than the solder joints with Ag or Bi content only. The results of SnAgCu and SnCu–Bi solder alloys show similar fatigue performance. Also, the fatigue performance of SnAgCu–Bi is close to SnAgCu–BiSb in the accelerated test. But the SnAgCu–Bi alloy is estimated to have a longer characteristic life under low-stress amplitude cycling. The microstructure analysis shows a bismuth-rich phase formed around the Ag3Sn precipitates. Adding bismuth in the solder alloy can significantly improve the fatigue properties through solid solution hardenings. On another hand, the plastic strain range and work dissipation were measured from the hysteresis loops for all tests. The Morrow Energy and the Coffin–Manson models were developed from the fitted data to predict the fatigue life as a function of work dissipation and plastic strain range.



2012 ◽  
Vol 726 ◽  
pp. 133-140 ◽  
Author(s):  
Stanisław Mroziński ◽  
Michał Piotrowski

The paper assessed the impact of the laser welding speed on the strength and fatigue properties of the aluminum layer found in multilayer pipes. The conducted experiment has shown that during the adjustment of the welding speed one has to take into account not only the results of static tests, but also the results of fatigue tests. The impact of the welding speed on fatigue life depends on the level of stress max. This level is slight in the area of the biggest stresses and increases along with the decrease in stresses.



2016 ◽  
Vol 879 ◽  
pp. 2377-2382 ◽  
Author(s):  
Kyosuke Kobayashi ◽  
Ikuo Shohji ◽  
Hiroaki Hokazono

Tensile and low cycle fatigue properties of Sn-5Sb (mass%) solder were investigated with miniature size tensile specimens. The effect of temperature and strain rate on tensile properties and the effect of temperature on low cycle fatigue properties were examined. Tensile strength increases with increasing strain rate regardless of temperature investigated. For elongation, the effect of temperature on it is negligible although it slightly increases with increasing strain rate. The low cycle fatigue life of Sn-5Sb obeys by the Manson-Coffin’s equation. The effect of temperature on the fatigue life is negligible in the temperature range from 25 oC to 150 oC. In the low cycle fatigue test with a high total strain range of 4%, cracking at phase boundary mainly occurs regardless of temperature investigated. In the case of a low total strain range of 0.4%, ductile fracture mainly occurs, and cracking at phase boundary with generation of grooves also occurs at high temperature.



Sign in / Sign up

Export Citation Format

Share Document