Synthesis and Magnetic Studies of Core-Shell FePt@Fe3O4 Nanowires and Nanoparticles

2012 ◽  
Vol 510 ◽  
pp. 623-627 ◽  
Author(s):  
Wei Li ◽  
Ming Ge Zhou ◽  
Ming Gang Zhu ◽  
Dong Zhou ◽  
Yang Long Hou

In this work, the core-shell FePt@Fe3O4 nanowires and nanoparticles as a new hard-soft composite magnetic materials were synthetized by reduction of platinum acetyl acetonate and iron pentacarbonyl together in the presence of oleic acid and oleyl amine stabilizers by polyol process. As-synthesized FePt nanowires and nanoparticles with 0.5-3 nm Fe3O4 shell were preparated by controlled addition of excess of Fe (CO)5 into the reaction mixture and air oxidation. The phase analysis, structure, and magnetic properties were determined by X-ray diffraction (XRD), High resolution transmission electron microscope (HRTEM), Scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) techniques.

2013 ◽  
Vol 724-725 ◽  
pp. 740-743
Author(s):  
Shi Zhao Kang ◽  
Tan Wu ◽  
Xiang Qing Li ◽  
Qi Fan Wang ◽  
Jin Mu

CuO-decorated core-shell montmorillonite-TiO2 colloids were prepared and characterized with transmission electron microscope, powder X-ray diffraction analysis, Brunauer-Emmett-Teller analysis and UV-vis spectrua. Meanwhile, their photocatalytic activity for hydrogen evolution from water was explored under UV irradiation using methanol as a sacrificial reagent. The results indicate that they are an efficient photocatalyst with a rate of H2 evolution of 219 μmol·h-1·g-1 which is higher than that of anatase TiO2 nanoparticles.


2004 ◽  
Vol 818 ◽  
Author(s):  
Yanglong Hou ◽  
Hiroshi Kondoh ◽  
Toshiaki Ohta

AbstractThe combination of 1-adamantanecarboxylic acid and tri-alkylphosphine was applied to produce monodisperse FePd nanoparticles by the polyol reduction of palladium acetylacetonate and thermally decomposition of iron pentacarbonyl. Images of high resolution transmission electron microscopy (TEM) and X-ray diffraction (XRD) data indicate a highly monodisperse and crystalline nature of the FePd nanoparticles. Magnetic studies performed by Quantum Design SQUID magnetometer show that FePd (16nm) nanoparticles are superparamagnetic at room temperature.


2019 ◽  
Vol 18 (05) ◽  
pp. 1850033 ◽  
Author(s):  
Al-Sayed A. M. Al-Sherbini ◽  
Gamal El-Ghannam ◽  
Hesham Yehya ◽  
O. Aied Nassef

In this paper, we report the synthesis of Fe3O4 nanoparticles which are resistant to surface poisoning, has been adopted. Fe3O4 nanoparticles have been successfully coated with Au in the form of a shell with different sizes (Fe3O4/Au Core/Shell). Adjustment of the components’ ratio makes the shell thickness of the core/shell particles tunable. Thus, the presented route yields well-defined core/shell structures of different sizes in the range 15–57[Formula: see text]nm with varying the proportion of Au noble metal to Fe3O4 nanoparticles. The UV-Visible absorption spectra, X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) were applied for the characterization of the formed core/shell structures. Moreover, magnetic properties of the core/shell nanocomposites were also studied using Vibrating Sample Magnetometry (VSM).


2021 ◽  
Author(s):  
Yan Chen ◽  
Yuemei Lan ◽  
Dong Wang ◽  
Guoxing Zhang ◽  
Wenlong Peng ◽  
...  

A series of Gd2-xMoO6:xEu3+(x=0.18-0.38) nanophosphors were synthesized by the solvothermal method. The properties of this nanophosphor were characterized by x-ray diffraction (XRD), transmission electron microscope (TEM), fluorescence spectra and diffuse...


2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Giriraj Tailor ◽  
Jyoti Chaudhay ◽  
Deepshikha Verma ◽  
Bhupendra Kr. Sarma

AbstractThe present study reports the novel synthesis of Zinc nanoparticles (Zn NPs) by thermal decomposition method and its characterisation by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and X-ray Diffraction Measurements (XRD). Synthesis of Zn NPs was achieved by using thermosetting polymer and zinc salts as precursor. Zn NPs were obtained on calcination at 850 °C for 30 min. SEM study reveals that synthesized nanoparticles are spherical in shape. XRD analysis shows that the Zn NPs formed are low crystalline in nature.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1141
Author(s):  
Georgia Basina ◽  
Hafsa Khurshid ◽  
Nikolaos Tzitzios ◽  
George Hadjipanayis ◽  
Vasileios Tzitzios

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids’ surface functionalization in a nonpolar solvent.


2011 ◽  
Vol 80-81 ◽  
pp. 217-220 ◽  
Author(s):  
Xue Qing Yue ◽  
Hai Jun Fu ◽  
Da Jun Li

Graphite encapsulated nickel nanoparticles were prepared by ball milling andsubsequently annealing a mixture of expanded graphite with nickel powders. The products were characterized by transmission electron microscope and X-ray diffraction. The formation mechanism of the products was discussed. Results show that the products have a size range of 20-150 nm. The graphite and nickel in the products all exhibit a high crystallinity.


2011 ◽  
Vol 23 (7) ◽  
pp. 526-534 ◽  
Author(s):  
Yang Wang ◽  
Boming Zhang ◽  
Jinrui Ye

Hybrid nanocomposites were successfully prepared by the incorporation of polyethersulfone (PES) and organoclay into epoxy resin. They had higher fracture toughness than the prepared PES/epoxy blend and organoclay/epoxy nanocomposites. The microstructures of the hybrid nanocomposites were studied. They were comprised of homogeneous PES/epoxy semi-interpenetrating network (semi-IPN) matrices and organoclay micro-agglomerates made up of tactoid-like regions composed of ordered exfoliated organoclay with various orientations. The former was confirmed with dynamic mechanical analysis, scanning electron microscopy and transmission electron microscopy, while the latter was successfully observed with X-ray diffraction measurements, optical microscope, scanning electron microscope and transmission electron microscope. The improvement of their fracture toughness was due to the synergistic toughening effect of the PES and the organoclay and related to their microstructures.


2011 ◽  
Vol 236-238 ◽  
pp. 1712-1716 ◽  
Author(s):  
Hai Tao Liu ◽  
Jun Dai ◽  
Jia Jia Zhang ◽  
Wei Dong Xiang

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


Sign in / Sign up

Export Citation Format

Share Document