Harvesting Human Biomechanical Energy to Power Portable Electronics

2012 ◽  
Vol 516-517 ◽  
pp. 1779-1784
Author(s):  
Long Han Xie ◽  
Ru Xu Du

It is known that human body contains rich chemical energy, part of which is converted to mechanical energy up to 200W, especially when human in walking, so human body is an ideal sustainable energy resource for portable electronic devices. The motion pattern of human movement in normal walking is studied, showing that the arm swinging, knee motion and hip motion can be approximated as sinusoidal functions with relatively large amplitude. In order to harvest such human motion, several methods are investigated, including pendulum, translational spring and torsion spring, which can also be mathematically formatted as second order differential equation with damped item. This paper also gives a typical device to harvest human motion: a novel energy harvester which directly converts human motion to electricity based on electromagnetic induction. Detail structures of the harvesting device are illustrated with mathematical analysis. Simulation studies are also made.

2020 ◽  
Vol 7 (4) ◽  
pp. 402
Author(s):  
Binti Nashirotun

The purpose of this study was to determine the increase in activity and science learning outcomes in human motion system material using the jigsaw method and human body media. This research method uses classroom action research. This research was conducted in class 8F MTs.N 4 Klaten in the 2019/2020 school year with 39 students as research subjects as science teachers and 8F grade students. The research instrument used test and non-test, while the data analysis used comparative descriptive analysis. The results of this study indicate that the use of the jigsaw method and human body media can increase student activity and learning outcomes in the human movement system material in class 8F MTs.N 4 Klaten.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yunlong Ma ◽  
Sanaa Sharaf ◽  
Basel Jamal Ali

Abstract The article proposes a human motion capture method based on operational data. The thesis first uses the human body wear system to perform functional processing on the captured periodic motion data, and then extracts the data sequence for the few motions. Thereafter, the classification of the vector calculation method is carried out according to the characteristics of periodic data. Through experimental research, it is found that the functional data analysis (FDA) algorithm proposed in the thesis can accurately identify human motion behaviour, and the automatically collected data has a recognition rate that is as high as 98.9%. Therefore, we have concluded that the human body data functional analysis algorithm has higher recognition accuracy than the traditional optical capture system. Thus, it is worthy of further research and discussion.


Author(s):  
Yong Bai ◽  
Yinggang Chen

With the advent of the information age, computer-related application research has become more and more extensive, human motion analysis and action scoring based on computer vision have gradually become the focus of attention. In order to adapt to the development of the times and solve the problems related to the analysis of human motion, the experiment analyzed the similarity of eight common human movement behaviors, analyze the movement speed of men and women under sports training, and analyzed the accuracy of the human body motion recognition model in the two cases of the original gray data and the frame difference channel, finally, the denoising performance of four different algorithms of SMF, EMF, RAMF and median filter algorithm in digital image processing is analyzed. The final result shows that there is a big similarity between the same kind of human movement behavior, the accuracy rate of the frame difference channel human body recognition model is higher than that of the original gray data recognition model, and digital image processing median filter algorithm has good image denoising performance.


Author(s):  
L. Chen ◽  
B. Wu ◽  
Y. Zhao

Abstract. The human body posture is rich with dynamic information that can be captured by algorithms, and many applications rely on this type of data (e.g., action recognition, people re-identification, human-computer interaction, industrial robotics). The recent development of smart cameras and affordable red-green-blue-depth (RGB-D) sensors has enabled cost-efficient estimation and tracking of human body posture. However, the reliability of single sensors is often insufficient due to occlusion problems, field-of-view limitations, and the limited measurement distances of the RGB-depth sensors. Furthermore, a large-scale real-time response is often required in certain applications, such as physical rehabilitation, where human actions must be detected and monitored over time, or in industries where human motion is monitored to maintain predictable movement flow in a shared workspace. Large-scale markerless motion-capture systems have therefore received extensive research attention in recent years.In this paper, we propose a real-time photogrammetric system that incorporates multithreading and a graphic process unit (GPU)-accelerated solution for extracting 3D human body dynamics in real-time. The system includes a stereo camera with preliminary calibration, from which left-view and right-view frames are loaded. Then, a dense image-matching algorithm is married with GPU acceleration to generate a real-time disparity map, which is further extended to a 3D map array obtained by photogrammetric processing based on the camera orientation parameters. The 3D body features are acquired from 2D body skeletons extracted from regional multi-person pose estimation (RMPE) and the corresponding 3D coordinates of each joint in the 3D map array. These 3D body features are then extracted and visualised in real-time by multithreading, from which human movement dynamics (e.g., moving speed, knee pressure angle) are derived. The results reveal that the process rate (pose frame-rate) can be 20 fps (frames per second) or above in our experiments (using two NVIDIA 2080Ti and two 12-core CPUs) depending on the GPU exploited by the detector, and the monitoring distance can reach 15 m with a geometric accuracy better than 1% of the distance.This real-time photogrammetric system is an effective real-time solution to monitor 3D human body dynamics. It uses low-cost RGB stereo cameras controlled by consumer GPU-enabled computers, and no other specialised hardware is required. This system has great potential for applications such as motion tracking, 3D body information extraction and human dynamics monitoring.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 924
Author(s):  
Zhenzhen Huang ◽  
Qiang Niu ◽  
Ilsun You ◽  
Giovanni Pau

Wearable devices used for human body monitoring has broad applications in smart home, sports, security and other fields. Wearable devices provide an extremely convenient way to collect a large amount of human motion data. In this paper, the human body acceleration feature extraction method based on wearable devices is studied. Firstly, Butterworth filter is used to filter the data. Then, in order to ensure the extracted feature value more accurately, it is necessary to remove the abnormal data in the source. This paper combines Kalman filter algorithm with a genetic algorithm and use the genetic algorithm to code the parameters of the Kalman filter algorithm. We use Standard Deviation (SD), Interval of Peaks (IoP) and Difference between Adjacent Peaks and Troughs (DAPT) to analyze seven kinds of acceleration. At last, SisFall data set, which is a globally available data set for study and experiments, is used for experiments to verify the effectiveness of our method. Based on simulation results, we can conclude that our method can distinguish different activity clearly.


2021 ◽  
Vol 11 (15) ◽  
pp. 6900
Author(s):  
Su-Kyung Sung ◽  
Sang-Won Han ◽  
Byeong-Seok Shin

Skinning, which is used in skeletal simulations to express the human body, has been weighted between bones to enable muscle-like motions. Weighting is not a form of calculating the pressure and density of muscle fibers in the human body. Therefore, it is not possible to express physical changes when external forces are applied. To express a similar behavior, an animator arbitrarily customizes the weight values. In this study, we apply the kernel and pressure-dependent density variations used in particle-based fluid simulations to skinning simulations. As a result, surface tension and elasticity between particles are applied to muscles, indicating realistic human motion. We also propose a tension yield condition that reflects Tresca’s yield condition, which can be easily approximated using the difference between the maximum and minimum values of the principal stress to simulate the tension limit of the muscle fiber. The density received by particles in the kernel is assumed to be the principal stress. The difference is calculated by approximating the moment of greatest force to the maximum principal stress and the moment of least force to the minimum principal stress. When the density of a particle increases beyond the yield condition, the object is no longer subjected to force. As a result, one can express realistic muscles.


2011 ◽  
Vol 403-408 ◽  
pp. 2593-2597
Author(s):  
Hong Bao ◽  
Zhi Min Liu

In the analysis of human motion, movement was divided into regular motion (such as walking and running) and random motion (such as falling down).Human skeleton model is used in this paper to do the video-based analysis. Key joints on human body were chosen to be traced instead of tracking the entire human body. Shape features like mass center trajectory were used to describe the movement, and to classify human motion. desired results achieved.


2013 ◽  
Vol 8 (2) ◽  
pp. 73 ◽  
Author(s):  
Alexander Refsum Jensenius ◽  
Rolf Inge Godøy

<p class="author">The paper presents sonomotiongram, a technique for the creation of auditory displays of human body motion based on motiongrams. A motiongram is a visual display of motion, based on frame differencing and reduction of a regular video recording. The resultant motiongram shows the spatial shape of the motion as it unfolds in time, somewhat similar to the way in which spectrograms visualise the shape of (musical) sound. The visual similarity of motiongrams and spectrograms is the conceptual starting point for the sonomotiongram technique, which explores how motiongrams can be turned into sound using &ldquo;inverse FFT&rdquo;. The paper presents the idea of shape-sonification, gives an overview of the sonomotiongram technique, and discusses sonification examples of both simple and complex human motion.</p>


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


2016 ◽  
Vol 2 (1) ◽  
pp. 4
Author(s):  
Arturo Bertomeu-Motos

From the time of Aristotle onward, there have been countless books written on the topic of movement in animals and humans. However, research of human motion, especially walking mechanisms, has increased over the last fifty years. The study of human body movement and its stability during locomotion involves both neuronal and mechanical aspect. The mechanical aspect, which is in the scope of this thesis, requires knowledge in the field of biomechanics. Walking is the most common maneuver of displacement for humans and it is performed by a stable dynamic motion. In this article it is introduced the bases of the human walking in biomechanical terms. Furthermore, two stability descriptive parameters during walking are also explained - Center of Pressure (CoP) and Zero-Moment Pint (ZMP).


Sign in / Sign up

Export Citation Format

Share Document