The Study of Pyrite Surface Properties and Effect Mechanism with Xanthate Caused by the Microscopic Crystal Structure and Defects

2012 ◽  
Vol 538-541 ◽  
pp. 363-367
Author(s):  
Jin Xi Yu ◽  
Wen Li Liu

The pyrite in the nature, due to the differences of the semiconductor properties caused by crystal structure and the presence of defects, will be bound to seriously affect the surface state and surface-activity of the mineral, eventually make the process of electrochemical reaction and flotation behavior change in the solution. Starting from the microscopic point of view, this article would study the affect mechanism of crystal structure and defects on the pyrite surface properties and the electrochemical reaction process. Studies have shown, because of the existence of the strong Fe-S covalent bond and determinate equilibrium defects, make the Fermi level and valence state of partial surface element change, accordingly lead to special semiconductor and surface properties of pyrite, ultimately affect the process of pyrite electrochemical flotation.

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3534 ◽  
Author(s):  
Peng Xi ◽  
Donghui Wang ◽  
Wenli Liu ◽  
Changsheng Shi

From the macroscopic point of view, the hydrophilicity of symbiotic carbon pyrite is weakened overall compared to that of pure pyrite. It is very important to explain the impact of elemental carbon accreted on a pyrite surface on the surface’s hydrophobicity from the perspective of quantum chemistry. To study the influence of adsorbed carbon atoms on the hydrophilicity of a coal pyrite surface versus a pyrite surface, the adsorption of a single water molecule at an adjacent Fe site of a one-carbon-atom-covered pyrite surface and a carbon atom monolayer were simulated and calculated with the first-principles method of density functional theory (DFT). The water molecules can be stably adsorbed at the adjacent Fe site of the carbon-atom-covered pyrite surface. The hybridization of the O 2p (H2O) and Fe 3d (pyrite surface) orbitals was the main interaction between the water molecule and the pyrite surface, forming a strong Fe–O covalent bond. The water molecule only slightly adsorbs above a C atom on the carbon-atom-covered pyrite and the carbon atom monolayer surfaces. The valence bond between the water molecule and the pyrite surface changed from an Fe–O bond to an Fe–C–O bond, in which the C–O bond is very weak, resulting in a weaker interaction between water and the surface.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1032
Author(s):  
Anirban Naskar ◽  
Rabi Khanal ◽  
Samrat Choudhury

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B–X and X–X bond, the X–X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B–X–B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.


2021 ◽  
Vol 44 (1) ◽  
pp. 213-217
Author(s):  
Waly Diallo ◽  
Hélène Cattey ◽  
Laurent Plasseraud

Abstract Crystallization of [(Ph3Sn)2SeO4] ⋅ 1.5H2O in methanol leads to the formation of [{(Ph3Sn)2SeO4} ⋅ CH3OH] n (1) which constitutes a new specimen of organotin(IV) selenate derivatives. In the solid state, complex 1 is arranged in polymeric zig-zag chains, composed of alternating Ph3Sn and SeO4 groups. In addition, pendant Ph3Sn ⋅ CH3OH moieties are branched along chains according to a syndiotactic organization and via Sn-O-Se connections. From a supramolecular point of view, intermolecular hydrogen bonds established between the selenate groups (uncoordinated oxygen) and the hydroxyl functions (CH3OH) of the pendant groups link the chains together.


Author(s):  
Paolo Ballirano ◽  
Beatrice Celata ◽  
Alessandro Pacella ◽  
Ferdinando Bosi

A detailed description of the structure of the amphibole-supergroup minerals is very challenging owing to their complex chemical composition that renders the process of cation partition extremely difficult, particularly because of the occurrence of multivalent elements. Since amphiboles naturally occur under a fibrous morphology and have largely been used to produce asbestos, there is a growing demand for detailed and accurate structural data in order to study the relationships between structure, composition and toxicity. The present study proposes a recommended refinement procedure for both X-ray single-crystal structure refinement (SREF) and Rietveld analysis for tremolite, selected as a test case. The corresponding structural results are compared to estimate the `degree of confidence' of the Rietveld refinement with regard to SREF. In particular, it is shown that the interpretation of the electron density of the tremolite structure by SREF is model dependent. By assuming that the site-scattering values from SREF should be as close as possible to those from electron microprobe analysis, as a crucial constraint for the correct description of the final crystal-chemical model, it is found that it is best satisfied by using partially ionized scattering curves (SCs) for O and Si, and neutral SCs (neutral oxygen curves or NOCs) for other atoms. This combination leads to the best fit to the diffraction data. Moreover, it is found that Rietveld refinement using NOCs produces the best structural results, in excellent agreement with SREF. It is worth noting that, due to the complexity of the diffraction pattern and the fairly large number of freely refinable parameters, refinements with different combinations of SCs produce results almost indistinguishable from a statistical point of view, albeit showing significant differences from a structural point of view.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joachim Breternitz ◽  
Michael Tovar ◽  
Susan Schorr

Abstract The crystal structure of MAPbI3, the signature compound of the hybrid halide perovskites, at room temperature has been a reason for debate and confusion in the past. Part of this confusion may be due to twinning as the material bears a phase transition just above room temperature, which follows a direct group–subgroup relationship and is prone to twinning. Using neutron Laue diffraction, we illustrate the nature of twinning in the room temperature structure of MAPbI3 and explain its origins from a group-theoretical point-of-view.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Orville A. Pemberton ◽  
Ruslan Tsivkovski ◽  
Maxim Totrov ◽  
Olga Lomovskaya ◽  
Yu Chen

ABSTRACT Class A β-lactamases are a major cause of β-lactam resistance in Gram-negative bacteria. The recently FDA-approved cyclic boronate vaborbactam is a reversible covalent inhibitor of class A β-lactamases, including CTX-M extended-spectrum β-lactamase and KPC carbapenemase, both frequently observed in the clinic. Intriguingly, vaborbactam displayed different binding kinetics and cell-based activity for these two enzymes, despite their similarity. A 1.0-Å crystal structure of CTX-M-14 demonstrated that two catalytic residues, K73 and E166, are positively charged and neutral, respectively. Meanwhile, a 1.25-Å crystal structure of KPC-2 revealed a more compact binding mode of vaborbactam versus CTX-M-14, as well as alternative conformations of W105. Together with kinetic analysis of W105 mutants, the structures demonstrate the influence of this residue and the unusual conformation of the β3 strand on the inactivation rate, as well as the stability of the reversible covalent bond with S70. Furthermore, studies of KPC-2 S130G mutant shed light on the different impacts of S130 in the binding of vaborbactam versus avibactam, another recently approved β-lactamase inhibitor. Taken together, these new data provide valuable insights into the inhibition mechanism of vaborbactam and future development of cyclic boronate inhibitors.


2009 ◽  
Vol 368 (1-2) ◽  
pp. 76-82 ◽  
Author(s):  
Y.-H. Kiang ◽  
Chia-Yi Yang ◽  
Richard J. Staples ◽  
Janan Jona

2016 ◽  
Vol 72 (2) ◽  
pp. 124-127 ◽  
Author(s):  
Shuji Noguchi ◽  
Haruka Atsumi ◽  
Yasunori Iwao ◽  
Toshiyuki Kan ◽  
Shigeru Itai

Nobiletin [systematic name: 2-(3,4-dimethoxyphenyl)-5,6,7,8-tetramethoxy-4H-chromen-4-one; C21H22O8] is a flavonoid found in citrus peels, and has been reported to show a wide range of physiological properties, including anti-inflammatory, anticancer and antidementia activities. We have solved the crystal structure of nobiletin, which revealed that the chromene and arene rings of its flavone moiety, as well as the two methoxy groups bound to its arene ring, were coplanar. In contrast, the C atoms of the four methoxy groups bound to the chromene ring are out of the plane, making the molecule conformationally chiral. A comparison of the crystal structures of nobiletin revealed that it could adopt a variety of different conformations through rotation of the covalent bond between the chromene and arene rings, and the orientations of methoxy groups bound to the chromene ring.


Sign in / Sign up

Export Citation Format

Share Document