Prediction on Sound Insulation to a Single-Leaf Wall

2012 ◽  
Vol 594-597 ◽  
pp. 2824-2827 ◽  
Author(s):  
Xian Feng Huang ◽  
Zong Xiao Yang ◽  
Yan Yang

High sound insulation performance of a wall is one of the significant goals of the architecture design. For exploring a reliable sound insulation prediction method to a single-leaf wall, this paper introduces the coincidence effect in the calculation. This method can predict the wall’s sound reduction index easily, and depict the coincidence effect of a wall especially. Meanwhile, it is shown that the prediction method might be applied to the practical building acoustic design.

2021 ◽  
Author(s):  
Yohei Tsukamoto ◽  
Kimihiro Sakagami ◽  
Takeshi Okuzono ◽  
Yoshihiro Tomikawa

As a basic study of a practical method for predicting sound insulation performance of windows, this report presents a study of the sound reduction index of windows with single glazing below a critical frequency. First, results calculated by an existing theory for a single plate for the sound reduction indices are compared with measured results of actual windows to assess the theory’s applicability for evaluating the sound insulation performance of windows. Next, a regression analysis is employed to measured results of a certain number of actual windows to explore a further development of a more practical prediction. The following findings were obtained: (1) Sound reduction indices of actual fixed windows are predictable using Sewell’s transmission theory for a single plate. However, sound reduction indices of openable windows, especially those of sliding windows, are affected strongly by window frame gaps. Therefore, predicting sound reduction indices of all windows accurately is difficult if using only one theory. (2) The frequency slope of the window reduction index is much lower than that of the mass law. Regression analyses indicate that the frequency slope of the reduction index of all examined windows is 3.0 dB per octave, on average.


2021 ◽  
Vol 2 ◽  
Author(s):  
Yohei Tsukamoto ◽  
Kimihiro Sakagami ◽  
Takeshi Okuzono ◽  
Yoshihiro Tomikawa

As a basic study of a practical method for predicting the sound insulation performance of windows, this report presents a study of the sound reduction index of windows with single glazing, below a critical frequency. First, the results calculated by an existing theory for a single plate for the sound reduction indices are compared with measured results of actual windows to assess the theory’s applicability for evaluating the sound insulation performance of windows. Then, a regression analysis is employed to measure the results of a certain number of actual windows to explore a further development of a more practical prediction. The following findings were obtained: (1) Sound reduction indices of actual fixed windows are predictable using Sewell’s transmission theory for a single plate. However, sound reduction indices of openable windows, especially those of sliding windows, are strongly affected by gaps in the window frame. Therefore, predicting sound reduction indices of all windows accurately is difficult if using only one theory. (2) The frequency slope of the window reduction index is much lower than that of the mass law. Regression analyses indicate that the frequency slope of the reduction index of all examined windows is 3.0 dB per octave, on average.


2021 ◽  
Author(s):  
Yohei Tsukamoto ◽  
Kimihiro Sakagami ◽  
Takeshi Okuzono ◽  
Yoshihiro Tomikawa

As a basic study of a practical method for predicting sound insulation performance of windows, this report presents a study of the sound reduction index of windows with single glazing below a critical frequency. First, results calculated by an existing theory for a single plate for the sound reduction indices are compared with measured results of actual windows to assess the theory’s applicability for evaluating the sound insulation performance of windows. Next, a regression analysis is employed to measured results of a certain number of actual windows to explore a further development of a more practical prediction. The following findings were obtained: (1) Sound reduction indices of actual fixed windows are predictable using Sewell’s transmission theory for a single plate. However, sound reduction indices of openable windows, especially those of sliding windows, are affected strongly by window frame gaps. Therefore, predicting sound reduction indices of all windows accurately is difficult if using only one theory. (2) The frequency slope of the window reduction index is much lower than that of the mass law. Regression analyses indicate that the frequency slope of the reduction index of all examined windows is 3.0 dB per octave, on average.


2015 ◽  
Vol 752-753 ◽  
pp. 698-701
Author(s):  
Kyoung Woo Kim ◽  
Jun Oh Yeon ◽  
Kwan Seop Yang

Floating floor structures installed with resilient materials are commonly used to reduce sound from floor impacts. Resilient materials minimize the transmission of vibrations by absorbing shock vibrations occurring on the upper part. The floor impact sound reduction performance of resilient materials is related to the dynamic stiffness, which is a physical characteristic of materials. However, the dynamic stiffness varies according to the increase in the loading time of the load that is installed on the upper part of resilient materials. The dynamic stiffness values increase with an increase in the loading time; an increased dynamic stiffness value decreases the vibration reduction effect. The present study focuses on a floor structure installed with resilient materials, and identifies the degree of reduction in floor impact sound insulation performance with the elapse of time. The insulation of sound from lightweight impact sound decreased with the elapse of time, whereas the heavyweight impact sound did not show significant changes.


2015 ◽  
Vol 744-746 ◽  
pp. 1593-1596
Author(s):  
Shang You Wei ◽  
Xian Feng Huang ◽  
Zhi Xiang Zhuang ◽  
Jun Xin Lan

In this paper, a theoretical model to evaluate impact sound transmission through a homogeneous wall is proposed. The model which is based on the Statistical Energy Analysis framework exhibits a system with room-wall-room. For the purpose to explore the mechanism of impact sound transmission through a wall, the impact sound reduction index between two rooms are predicted. Meanwhile, the variation of impact sound reduction index with the walls properties are also taken into account. The results reveal that the density, elastic modulus and thickness of a homogeneous wall have diverse effects on its impact sound insulation and can be chosen adequately to achieve ideal insulation values.It provides an approach to optimize impact sound insulating properties of the walls.


2014 ◽  
Vol 507 ◽  
pp. 153-156
Author(s):  
Xian Feng Huang ◽  
Quan Shi ◽  
Chen Hui Zhu

The slits on the lightweight partitions have a significant effect on sound insulation which is investigated in this paper. According to Gomperts model for rectangular aperture, the sound reduction index of a wall with slits can be predicted. Two lightweight partitions were selected to analyze their sound reduction index variation with factors such as width, length and location of slits. Results show that these factors affect the sound insulation evidently, especially at high frequencies.


2014 ◽  
Vol 1057 ◽  
pp. 215-222 ◽  
Author(s):  
Dušan Dlhý ◽  
Peter Tomašovič

The structural complexity of a door causes difficulties in the description of its behavior from an acoustical point of view. In many cases, even a small change can cause a big difference in its sound-isolating properties. To determine the acoustical quality of a door, it is important to perform laboratory measurements of the door structure and door frame, the gaps including. A mathematical analysis based on experimental measurements of the sound reduction index of several door constructions was used to determine the acoustical door categories. The equations for calculating the sound reduction index, which were introduced in this paper, should help in the design of a suitable door from an acoustical point of view.


2011 ◽  
Vol 99-100 ◽  
pp. 354-357
Author(s):  
Xian Feng Huang ◽  
Jun Liu ◽  
Yan Yang

Coincidence effect which occurs in a certain frequency range will impairs the sound insulation of walls. For the purpose to predict the phenomenon of coincidence effect that is unlikely predicted theoretically by the mass law, the Statistical Energy Analysis (SEA) theory are adopted in studying coincidence effect of sound insulation of the light weight single-leaf wall. The comparison among predicted by SEA, by mass law and measured was performed. Therefore, the comparison results show that sound insulation prediction by SEA is more precise and agrees with the measured date. Moreover, the coincidence effect and its effect on sound insulation were predicted by SEA. Eventually, it is likely to select appropriate building materials and configuration to achieve a better sound environment theoretically.


2021 ◽  
Vol 23 (1) ◽  
pp. 77
Author(s):  
Bondan Dwisetyo ◽  
Maharani Ratna Palupi ◽  
Fajar Budi Utomo ◽  
Chery Chaen Putri ◽  
Dodi Rusjadi ◽  
...  

<p>The implementation of laboratory measurement of airborne sound insulation based on ISO and ASTM standards was carried out at SNSU BSN. The aim of this work to realize the measurement of airborne sound insulation for several sample tests, where the procedure of the test is performed according to the updated standard ISO 10140 and ASTM E90. Besides, the single number rating also is determined based on ISO 717-1 and ASTM E413. This measurement has been conducted in the two reverberation rooms using pressure method consist of measuring the sound pressure level, measuring the reverberation time, obtaining the sound reduction index (R) or sound transmission loss (STL), and determination of a single-number ratings of the samples test. From the results, some parameter requirements such as the frequency range and the rounding procedure of R or STL influence the measurement result slightly. Subsequently, the significant difference is obtained for the determination of single number rating in the shifting procedure of the reference curve.</p>


2017 ◽  
Vol 13 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Jiří Teslík ◽  
Radek Fabian ◽  
Barbora Hrubá

AbstractThis paper describes the results of a scientific project focused on determining of the Airborne Sound Insulation of a peripheral non-load bearing wall made of straw bales expressed by Weighted Sound Reduction Index. Weighted Sound Reduction Index was determined by measuring in the certified acoustic laboratory at the Faculty of Mechanical Engineering at Brno University of Technology. The measured structure of the straw wall was modified in combinations with various materials, so the results include a wide range of possible compositions of the wall. The key modification was application of plaster on both sides of the straw bale wall. This construction as is frequently done in actual straw houses. The additional measurements were performed on the straw wall with several variants of additional wall of slab materials. The airborne sound insulation value has been also measured in separate stages of the construction. Thus it is possible to compare and determinate the effect of the single layers on the airborne sound insulation.


Sign in / Sign up

Export Citation Format

Share Document