Field Test of Pollutant Removal Efficiencies of Storm Wetlands in Southern China

2012 ◽  
Vol 600 ◽  
pp. 43-46
Author(s):  
Ru Zhang ◽  
Kai Bin Feng ◽  
Jie Yang

This paper presents a study on the use of wetland as best management practices (BMPs) for controlling nonpoint source pollution located at Shenzhen and Qian Lake watershed at Nanchang in southern China. The Shenzhen experiments tested a construct wetland at the Xikeng Reservoir watershed, while the Nanchang experiments were conducted for treating stormwater on the campus of Nanchang University. Samples were collected during storm events and were analyzed for total suspended solids (TSS), biochemical oxygen demand (BOD5), ammonia nitrogen (NH3–N), and total phosphorus (TP). The removal efficiencies of both wetland systems were evaluated using the Efficiency Ratio (ER) method based on the event mean concentration (EMC) data. The wide range of performance results show that the average pollutants removal efficiencies of Qian Lake wetland are higher that Shenzhen wetland.

2011 ◽  
Vol 63 (6) ◽  
pp. 1211-1216 ◽  
Author(s):  
M. F. Chow ◽  
Z. Yusop ◽  
M. Mohamed

This paper examines the storm runoff quality from a commercial area in south Johor, Malaysia. Six storm events with a total of 68 storm runoff samples were analyzed. Event Mean Concentration (EMC) for all constituents analysed showed large inter-event variation. Site mean concentrations (SMC) for total suspended solids (TSS), oil and grease (O&G), biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), ammonia-nitrogen (NH3-N), total phosphorus (Total P) and Soluble P are 261, 4.31, 74, 192, 1.5, 0.006, 1.9, 1.12 and 0.38 mg/L, respectively. The SMCs at the studied site are higher than those reported in many urban catchments. The mean baseflow concentrations were higher than the EMCs for COD, Soluble P, NH3-N, NO3-N, Total P and NO2-N. However, the reverse was observed for TSS and O&G. All pollutants showed the occurrence of first flush phenomenon with the highest strength was observed for TSS, COD and NH3-N.


2014 ◽  
Vol 70 (9) ◽  
pp. 1456-1464 ◽  
Author(s):  
Guoren Xu ◽  
Chao Jia ◽  
Zhao Zhang ◽  
Yunlong Jiang

Biological treatment processes give relatively poor pollutant removal efficiencies in cold regions because microbial activity is inhibited at low temperatures. We developed an enhanced physicochemical-biological wastewater treatment process that involves micro-membrane filtration, anaerobic biofilter, and aerobic biofilter to improve the pollutant removal efficiencies that can be achieved under cold conditions. Full-scale experiments using the process were carried out in the northeast of China, at outdoor temperatures of around −30 °C. The average removal efficiencies achieved for chemical oxygen demand, total phosphorus, ammonia nitrogen, and suspended solids were 89.8, 92.9, 94.3, and 95.8%, respectively, using a polyaluminium chloride dosage of 50 mg L−1. We concluded that the process is effective to treat sewage in cold regions.


2002 ◽  
Vol 46 (6-7) ◽  
pp. 159-166 ◽  
Author(s):  
M. Bäckström ◽  
P.-A. Malmqvist ◽  
M. Viklander

A strategy for sustainable stormwater management is needed. This study has focused on the relative importance of stormwater as a pollutant source in a catchbasin, if Best Management Practices (BMPs) result in pollutant removal or pollutant redistribution, and methods for screening of stormwater strategies. Stormwater is most likely an important pathway for pollutants in a catchbasin perspective. True pollutant removal can only be achieved if the pollutant sources are eliminated. Until that is reached, we should have the best possible control of the pollutant fluxes in the watershed. This study indicates that the search for a sustainable stormwater strategy could be easier to handle if different “screens” could be used. The Swedish environmental objectives, which try to encapsulate all aspects of sustainability, may be used as a foundation for a “sustainability screen”. By using this screen, the “unsustainable” features of different stormwater strategies could be pointed out. A “standards and legislation screen” will be based on the EU Water Framework Directive. As this study has shown, it is doubtful whether the conventional BMPs, such as stormwater ponds and infiltration facilities, produce a sufficient pollutant control.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Zhen-dong Zhao ◽  
Qiang Lin ◽  
Yang Zhou ◽  
Yu-hong Feng ◽  
Qi-mei Huang ◽  
...  

The development of efficient and low-cost wastewater treatment processes remains an important challenge. A microaerobic up-flow oxidation ditch (UOD) with micro-electrolysis by waterfall aeration was designed for treating real municipal wastewater. The effects of influential factors such as up-flow rate, waterfall height, reflux ratio, number of stages and iron dosing on pollutant removal were fully investigated, and the optimum conditions were obtained. The elimination efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH 4 + -N), total nitrogen (TN) and total phosphorus (TP) reached up to 84.33 ± 2.48%, 99.91 ± 0.09%, 93.63 ± 0.60% and 89.27 ± 1.40%, respectively, while the effluent concentrations of COD, NH 4 + -N, TN and TP were 20.67 ± 2.85, 0.02 ± 0.02, 1.39 ± 0.09 and 0.27 ± 0.02 mg l −1 , respectively. Phosphorous removal was achieved by iron–carbon micro-electrolysis to form an insoluble ferric phosphate precipitate. The microbial community structure indicated that carbon and nitrogen were removed via multiple mechanisms, possibly including nitrification, partial nitrification, denitrification and anammox in the UOD.


2011 ◽  
Vol 255-260 ◽  
pp. 2718-2721
Author(s):  
Ru Zhang ◽  
Anthony N. Tafuri ◽  
Richard Field ◽  
Shaw L. Yu ◽  
Wen Bin Zhou ◽  
...  

Xikeng Reservoir is one of the major water supply reservoirs in Shenzhen. The water quality of Xikeng Reservoir has been poor, with much of the pollution coming from nonpoint sources. An innovative low impact development type of BMP called the BioBox was used at the Administration Building parking lot location, as a research site and demonstration project to show how small alterations to parking lot designs can dramatically decrease pollutant loads. Manual samples were collected during storm events and analyzed for total suspended solids (TSS); five-day biochemical oxygen demand (BOD5); ammonia nitrogen (NH3-N), and total phosphorus (TP). In summary, the ranges of removal rates of the BioBox are: TSS 70% - 90%; BOD5 20% - 50%, and ammonia and phosphorus 30% - 70%. The BioBox system effectively reduced the concentrations of pollutants in the parking lot runoff.


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


2017 ◽  
Author(s):  
John Moran ◽  
Philip Chamberlain

Blueprints for Tropical Dairy Farming provides insight into the logistics, infrastructure and management required for the development of small and large dairy farms in tropical developing countries. Farmers will learn how to improve the welfare, milk quality and productivity of their dairy herds. This book complements author John Moran’s five previous books on the principles of tropical dairy farming. The manual covers a wide range of topics related to ensuring the sustainability of dairy production systems in tropical developing countries, such as South and East Asia, Africa and Central America. It also provides guidelines for the best management practices of large-scale, more intensive dairy systems. While smallholder farms are the major suppliers of milk in the tropics, many larger farms are becoming established throughout the tropics to satisfy the increasing demands for fresh milk. Blueprints for Tropical Dairy Farming will be a valuable resource for farmers and stockpeople who want to improve the productive performance of their dairy herds, farm advisers who can assist farmers to achieve this aim, educators who develop training programs for farmers or who train dairy advisers in the basics of dairy production technology, and other stakeholders in tropical dairy production, such as local agribusiness, policy makers and research scientists. National and international agencies will learn new insights into the required long-term logistics for regional dairy development, while potential investors will acquire knowledge into intensive tropical dairy farming.


Author(s):  
Shaw L. Yu ◽  
T. Andrew Earles ◽  
G. Michael Fitch

The wetland mitigation and storm water management provisions in the 1987 Clean Water Act significantly affect transportation agencies. A common requirement of these federal storm water management provisions and state storm water regulations is the use of best-management practices (BMPs). The Virginia Department of Transportation has constructed more than 200 wetlands and many storm water BMPs, such as detention basins. A potentially cost-effective approach to satisfying wetland mitigation requirements and storm water regulations is to use mitigated wetlands as storm water BMPs. A multifunctional evaluation of two mitigated wetlands receiving highway runoff is presented to examine the feasibility of using mitigated wetlands as storm water BMPs. Influent and effluent water quality and quantity were monitored at the sites during storm events. Vegetation density and diversity and wetland wildlife were examined as functional indicators because they were believed to be the most likely to be impaired by highway runoff. Data collected were stored in a geographic information system, which was developed to serve as a database for current and future monitoring of mitigated wetland sites. Both sites had peak reductions in excess of 40 percent, with attenuation of greater than 90 percent for a system combining a detention basin and a mitigated wetland in series. Removal rates were as high as 90 percent for total suspended solids, 65 percent for chemical oxygen demand, 70 percent for total phosphorus and orthophosphate, and 50 percent for zinc. Despite having highway runoff as a primary water source, both sites support apparently healthy and diverse vegetative communities and provide habitat for a variety of wildlife.


2012 ◽  
Vol 65 (4) ◽  
pp. 713-720 ◽  
Author(s):  
Ying-Hua Li ◽  
Hai-Bo Li ◽  
Jing Pan ◽  
Xin Wang ◽  
Tie-Heng Sun

This study was to investigate domestic treatment efficiency of a subsurface wastewater infiltration (SWI) system over time. The performances of a young SWI system (in Shenyang University, China, fully operated for one year) and a mature SWI system (in Shenyang Normal University, China, fully operated for seven years) under the same operation mode were contrasted through field-scale experiments for one year. The performance assessment for these systems is based on physical and chemical parameters collected. The removal efficiencies within the young system were relatively high if compared with the mature one: for biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 95.0, 89.1, 98.1, 87.6 and 98.4%, respectively. However, the removal efficiencies decreased over time. The mean removal efficiencies for the mature SWI system were as follows: BOD (89.6%), COD (87.2%), SS (82.6%), NH3-N (69.1%) and TP (74.4%). The results indicate that the mature SWI system successfully removed traditional pollutants such as BOD from domestic wastewater. However, the nutrient reduction efficiencies (including NH3-N and TP) decreased after seven years of operation of the mature SWI system. Meanwhile, the SWI system did not decrease the receiving surface water quality.


2017 ◽  
Vol 77 (2) ◽  
pp. 304-322 ◽  
Author(s):  
D. T. Sponza ◽  
P. Alicanoglu

Abstract Inadequate treatment of hospital wastewater could result in considerable risks to public health due to its macro- and micropollutant content. In order to eliminate this problem, a new nanoparticle composite was produced under laboratory conditions and a photocatalytic degradation approach was used. Chemical oxygen demand (COD), biological oxygen demand (BOD5), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), total phosphorus (TP) (macro) and oflaxin (micro) pollutant removal were investigated with the nano graphene oxide magnetite (Nano-GO/M) particles by two different processes, namely adsorption and photodegradation. Low removal efficiencies (21–60%) were obtained in the adsorption process for the parameters given above, after 90 min contact time at a pH of 7.8 with 5 g/L Nano-GO/M composite. Using the photodegradation process, higher removal efficiencies were obtained with 2 g/L Nano-GO/M composite for COD (88%), TSS (82%), TKN (95%) and oflaxin (97%), at pH 7.8 after 60 min irradiation time at a UV power of 300 W. The synthesized nanoparticle was reused for two sequential treatments of pharmaceutical wastewater with no significant losses of removal efficiencies (for oflaxin 97%–90%). The quality of the treated hospital wastewater was first class according to the Turkish Water Pollution Control Regulations criteria. This water could also be used for irrigation purposes.


Sign in / Sign up

Export Citation Format

Share Document