scholarly journals Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153378 ◽  
Author(s):  
Haoqiang Zhang ◽  
Zhenkun Liu ◽  
Hui Chen ◽  
Ming Tang
2019 ◽  
Vol 43 ◽  
Author(s):  
Marisângela Viana Barbosa ◽  
Daniela de Fátima Pedroso ◽  
Nilton Curi ◽  
Marco Aurélio Carbone Carneiro

ABSTRACT Soil structure, which is defined by the arrangement of the particles and the porous space forming aggregates, is one of the most important properties of the soil. Among the biological factors that influence the formation and stabilization of soil aggregates, arbuscular mycorrhizal fungi (AMF) are distinguished due to extrarradicular hyphae and glomalin production. In this context, the objective of this study was to evaluate different AMF (Acaulospora colombiana, Acaulospora longula, Acaulospora morrowiae, Paraglomus occultum and Gigaspora margarita) associated with Urochloa brizantha (A. Rich.) Stapf on soil aggregate stability. The study was conducted in a completely randomized design, using an Oxisol and autoclaved sand 2:1 (v/v), with seven treatments: five AMF; and treatments with plants without inoculation and with only the soil, with 5 replicates. The experiment was conducted during 180 days and the following variables were evaluated: mycelium total length (TML); production of easily extractable glomalin-related soil protein (GRSP) in the soil and aggregate classes; stability of the dry and immersed in water aggregates through the mean geometric diameter (MGD) and the mean weighted diameter (MWD) of aggregates; and the soil aggregate stability index (ASI). It was observed that the inoculation favored soil aggregation, with a high incidence of A. colombiana, which presented the highest MGD, TML and GRSP production in the aggregates with Ø>2.0mm and for A. colombiana and A. morrowiae in the aggregates with Ø<0.105 mm, when compared to the treatment without inoculation. These results show that there is a distinction between the effects of different AMF on the formation and stability of soil aggregates.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 74
Author(s):  
Jessica Duchicela ◽  
James D. Bever ◽  
Peggy A. Schultz

The establishments of new organisms that arrive naturally or with anthropogenic assistance depend primarily on local conditions, including biotic interactions. We hypothesized that plants that rely on fungal symbionts are less likely to successfully colonize remote environments such as oceanic islands, and this can shape subsequent island ecology. We analyzed the mycorrhizal status of Santa Cruz Island, Galapagos flora compared with the mainland Ecuador flora of origin. We experimentally determined plant responsiveness and plant–soil feedback of the island flora and assessed mycorrhizal density and soil aggregate stability of island sites. We found that a greater proportion of the native island flora species belongs to families that typically do not associate with mycorrhizal fungi than expected based upon the mainland flora of origin and the naturalized flora of the island. Native plants benefited significantly less from soil fungi and had weaker negative soil feedbacks than introduced species. This is consistent with the observation that field sites dominated by native plant species had lower arbuscular mycorrhizal (AM) fungal density and lower soil aggregate stability than invaded field sites at the island. We found support for a mycorrhizal filter to the initial colonization of the Galapagos.


2015 ◽  
Vol 19 (3) ◽  
pp. 181
Author(s):  
. Eddiwal ◽  
Amrizal Saidi ◽  
Ismon Lenin ◽  
Eti Farda Husin ◽  
Azwar Rasyidin

The arbuscular mycorrhizal fungi ( AMF ) with plants able to increase the capacity of plants to absorb nutrients and water from the soil. Recently, research was indicated that AMF hyphae containing glomalin as a glycoprotein that serves to unify the dispersed soil particles. The content of glomalin in soil is positively correlated with soil aggregate stability. The research potential of AMF species indigenous of Ultisol Darmasraya District of West Sumatra and glomalin production in experimental pots of sterile sand medium has been carried out. The purpose of this study was to determine the diversity of AMF species on Ultisol and to seeking indigenous AMF isolates that had the best glomalin production capability. AMF spores were isolated and identified from the rhizosphere soil of corn in Ultisol. AMF species that had been identified experimentally were tested in culture medium pot of sand and zeolite (w / w 1:1) using corn crops. The results found nine of the AMF species indigenous of Ultisol Darmasraya, namely Acaulospora scrobiculata, Glomus etunicatum, Glomus luteum, Glomus mosseae, Glomus verruculosum, Glomus versiforme, Scutellospora gregaria, Scutellospora heterogama and Gigaspora sp. AMF species that showed better colonization ability in corn was G. luteum, G. verruculosum and G. versiforme. All three species produced glomalin significantly higher than the other species, i.e. 1.29 mg g-1; 1.17 mg g-1; 1.15 mg g-1, respectively. [How to Cite: Eddiwal, A Saidi, I Lenin, EF Husin and A Rasyidin. 2014. Potential Selection of Arbuscular Mycorrhizal Fungi (AMF) Indigenous Ultisols through the Production of Glomalin. J Trop Soils 19: 181-189. Doi: 10.5400/jts.2014.19.3.181]   


2021 ◽  
Vol 7 (8) ◽  
pp. 671
Author(s):  
Xiao Lou ◽  
Xiangyu Zhang ◽  
Yu Zhang ◽  
Ming Tang

The simultaneous effects of arbuscular mycorrhizal (AM) fungi and abscisic acid (ABA) on the tolerance of plants to heavy metal (HM) remain unclear. A pot experiment was carried out to clarify the effects of simultaneous applications of AM fungi and ABA on plant growth, Zn accumulation, endogenous ABA contents, proline metabolism, and the oxidative injury of black locust (Robinia pseudoacacia L.) exposed to excess Zn stress. The results suggested that exogenously applied ABA positively enhanced AM colonization, and that the growth of plants only with AM fungi was improved by ABA application. Under Zn stress, AM inoculation and ABA application increased the ABA content in the root/leaf (increased by 48–172% and 92%, respectively) and Zn content in the root/shoot (increased by 63–152% and 61%, respectively) in AM plants, but no similar trends were observed in NM plants. Additionally, exogenous ABA addition increased the proline contents of NM roots concomitantly with the activities of the related synthases, whereas it reduced the proline contents and the activity of Δ1-pyrroline-5-carboxylate synthetase in AM roots. Under Zn stress, AM inoculation and ABA application decreased H2O2 contents and the production rate of O2, to varying degrees. Furthermore, in the roots exposed to Zn stress, AM inoculation augmented the activities of SOD, CAT, POD and APX, and exogenously applied ABA increased the activities of SOD and POD. Overall, AM inoculation combined with ABA application might be beneficial to the survival of black locust under Zn stress by improving AM symbiosis, inhibiting the transport of Zn from the roots to the shoots, increasing the distribution of ABA in roots, and stimulating antioxidant defense systems.


Sign in / Sign up

Export Citation Format

Share Document