Degradation of Ciprofloxacin in Aqueous Solution by the Fenton Process

2012 ◽  
Vol 610-613 ◽  
pp. 352-355 ◽  
Author(s):  
Ji Feng Yang ◽  
Hong Hui Chen

The present study provides results describing the degradation performance of ciprofloxacin antibiotic via Fenton treatment. The effect of reaction conditions including the initial pH value, and dosages of ferrous ions and hydrogen peroxide on ciprofloxacin and COD removal was investigated. Ciprofloxacin removal efficiency of more than 90% was achieved under optimum reaction conditions of pH value of 2, dosages of 0.75 mmol/L of ferrous ion, and 2.0 mmol/L of hydrogen peroxide after 10min. However, the change of COD in aqueous solution was not obvious and further study about intermediate products during oxidation process should be carried out in the future.

2013 ◽  
Vol 800 ◽  
pp. 601-605
Author(s):  
Xi Sheng He ◽  
Hui Qing Peng

The initial pH, initial concentration of Fe2+and NaClO on the degradation of ammonium butyl-dithiophosphate using Fe2+/NaClO process have been investigated in this paper. The results shows that under the optimum reaction conditions of a temperature 28°C, pH 4.0, the initial concentration of Fe2+and NaClO is 15 mg/L and 5.33 mL/L, respectively, about 87.86% ammonium butyl-dithiophosphate removal can be achieved within 150 min by using a Fe2+/NaClO process. The degradation of ammonium butyl-dithiophosphate under different NaClO concentration conditions follows the first order exponential decay equations. The Fe2+/NaClO can efficiently oxidation of ammonium butyl-dithiophosphate in aqueous solution and can be an effective process for the treatment of ammonium butyl-dithiophosphate wastewater.


2011 ◽  
Vol 356-360 ◽  
pp. 1622-1625 ◽  
Author(s):  
Chong Hao Huang ◽  
Meng Xing Cao ◽  
Jun Hong Luo ◽  
Chao Zhang

Pharmaceutical wastewater was treated by micro-electrolysis and Fenton process.The aim of this research was to optimize operating parameters in micro-electrolysis and Fenton process. Effectiveness of important process parameters such as mass ratio of iron to carbon, the initial pH, reaction time and H2O2 dosage on the performance of micro-electrolysis and Fenton process were investigated. The results show that the removal efficiency of pharmaceutical wastewater chemical oxygen demand (COD) could reach 37.3% at the optimal pH of 4 with the iron to carbon ratio of 1:1 after 80 min treatment. The operating conditions of Fenton process are 0.5% of H2O2 dosage, the pH value of 4 and the reaction time of 180 min. The pharmaceutical wastewater COD removal could reach 79.4%.


2012 ◽  
Vol 573-574 ◽  
pp. 627-630
Author(s):  
Zhi Gang Chen ◽  
Rui Xue Zhang ◽  
Bo Zhang ◽  
An Ping Wei

In this study, in order to reduce the sodium formate concentration thereby reducing toxicity, the treatment of this wastewater by Fenton process was investigated. The effects of initial PH value, reaction time, concentration of FeSO4• 7H2O, and H2O2 dosage on the removal efficiency of COD were studied respectively. The experiment results show that when using Fenton oxidization pretreatment process, with pH 2.0, FeSO4•7H2O concentration 4000mg/L, H2O2(30 % ) portion 4ml/L, and reaction time 20min, COD removal efficiency was more than 50%, oxidization efficiency was good.


2013 ◽  
Vol 798-799 ◽  
pp. 1123-1127
Author(s):  
Hua Lei Zhou ◽  
Qiong Qiong Zhu ◽  
Dong Hua Huang

The activated carbon with high surface area was prepared by KOH activation from anthracite and used as adsorbent for removal of Cr (VI) from aqueous solution. The pore structure and surface properties were characterized by N2 adsorption at 77K, transmission electron microscope (TEM) and Fourier transform infrared spectroscopy ( FTIR). Effect of pH and isotherms at different temperature were investigated. Results show that the prepared carbon is a microporous-and mesoporous-adsorbent with developed pore structure and abundant surface oxygen-containing groups. PH value of the solution plays key function on the adsorption. The chemical adsorption dominates the adsorption process. The activated carbon exhibits much higher Cr adsorption capacity than the commercial activated carbon at initial pH of ~3. The equilibrium adsorption data are fitted by both Freundlich model and Langmuir model well.


2019 ◽  
Vol 79 (6) ◽  
pp. 1092-1101 ◽  
Author(s):  
Krishnendu Kumar Pobi ◽  
Biplab Mondal ◽  
Sumanta Nayek ◽  
Apurba K. Patra ◽  
Rajnarayan Saha

Abstract The present study is focused on the removal of Hg2+, Cd2+ and Pb2+ ions from aqueous solution using a tridentate chelating agent, 2-pyridyl-N-(2′-methylthiophenyl) methyleneimine (PMTPM); and applicability of such removal from industrial wastewater using PMTPM is also investigated. The results showed that the metal ions removal efficiency using PMTPM was in the order of Hg2+(99.46%) > Cd2+(95.42%) > Pb2+(94.54%) under optimum reaction conditions (L:M2+ = 3:1, pH = 9, time = 24 h, temp. = 30 °C). Formed chelated complexes such as [Hg(PMTPM)Cl2] (1), [Cd(PMTPM)Cl2] (2) and [Pb(PMTPM)Cl2] (3) were characterized by numerous spectroscopic tools and X-ray structure determination of a representative complex of Hg2+. In the X-ray structure of [Hg(PMTPM)Cl2], 1, the Hg2+ adopted a distorted tetrahedral coordination geometry surrounding two N donors of PMTPM and two chloride ions. A similar coordination geometry surrounding the respective metal centres in 2 and 3 was established. The thermogravimetric analysis (TGA) revealed a stability order of [Cd(PMTPM)Cl2] > [Hg(PMTPM)Cl2] > [Pb(PMTPM)Cl2]. Further the comparative metal leaching behaviour of these chelate complexes exhibited higher stability in alkaline solution than in acidic. Moreover, PMTPM was applied in real mixed industrial wastewater with alkaline pH, and adequate removals of toxic metals were achieved.


The radiolysis of dilute aqueous solutions containing ethylene and oxygen has been investigated. Pulse radiolysis was used to measure the rate constants for the addition of hydroxyl radicals to ethylene, the binary decomposition of the resulting hydroxyethyl radicals and their addition to ethylene and reaction with oxygen to yield peroxy radicals. The rate constants have also been determined for the mutual interaction of the peroxy radicals and their reaction with ferrous ions. The principal products of γ -irradiation were aldehydes and organic hydroperoxides. Hydrogen peroxide was found in yields close to the molecular yield from water. The polymer produced in the absence of oxygen was not formed, and glycollaldehyde, reported as a major product by previous workers, could not be detected. At constant composition of the gas mixtures, product yields were unaffected by total pressure in the range up to 40 atm, but were strongly dependent on the proportion of oxygen. Aldehyde yields were markedly greater at pH 1.2 than in neutral solution. The influence of ferrous ions an d of added hydrogen peroxide has been determined. The pulse radiolysis and γ -irradiation experiments complement one another and show that the radiation-induced oxidation of ethylene in aqueous solution involves the same primary reactions as occur in the absence of oxygen, followed by the formation and further reactions of peroxy radicals.


2016 ◽  
Vol 74 (6) ◽  
pp. 1335-1345 ◽  
Author(s):  
Fengfeng Ma ◽  
Baowei Zhao ◽  
Jingru Diao

The purpose of this work is to investigate adsorption characteristic of corn stalk (CS) biochar for removal of cadmium ions (Cd2+) from aqueous solution. Batch adsorption experiments were carried out to evaluate the effects of pH value of solution, adsorbent particle size, adsorbent dosage, and ionic strength of solution on the adsorption of Cd2+ onto biochar that was pyrolytically produced from CS at 300 °C. The results showed that the initial pH value of solution played an important role in adsorption. The adsorptive amount of Cd2+ onto the biochar decreased with increasing the adsorbent dosage, adsorbent particle size, and ionic strength, while it increased with increasing the initial pH value of solution and temperature. Cd2+ was removed efficiently and quickly from aqueous solutions by the biochar with a maximum capacity of 33.94 mg/g. The adsorption process was well described by the pseudo-second-order kinetic model with the correlation coefficients greater than 0.986. The adsorption isotherm could be well fitted by the Langmuir model. The thermodynamic studies showed that the adsorption of Cd2+ onto the biochar was a spontaneous and exothermic process. The results indicate that CS biochar can be considered as an efficient adsorbent.


2011 ◽  
Vol 148-149 ◽  
pp. 470-473
Author(s):  
Li Fang Zhang

The biosorption of Malachite Green from aqueous solution was investigated by using pretreated fungal biomass in a batch system. The effects of initial pH, NaCl concentration, initial dye concentration and temperature on dye biosorption were studied. The results showed that the pretreated fungal biomass exhibited higher dye removal at initial pH value of 5.0-6.0. The bosorption capacity was increased with the increasing temperature in studied temperature range. The Langmuir and Freundlich isotherm models were applied to experimental equilibrium data and the Langmuir model better described the equilibrium dye uptake than the Freundlich model. Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.


Author(s):  
Xiaoyan Li ◽  
Hongwei Wang ◽  
Guozhen Zhang ◽  
Tianhong Zhou ◽  
Fuping Wu

Abstract Advanced oxidation process (AOP) has attracted widespread attention because it can effectively remove antibiotics in water, but its practical engineering application is limited by the problems of the low efficiency and difficult recovery of the catalyst. In the study, nano-spinel CoFe2O4 was prepared by hydrothermal method and served as the peroxymonosulfate (PMS) catalyst to degrade antibiotic amoxicillin (AMX). The reaction parameters such as CoFe2O4 dosage, AMX concentration, and initial pH value were also optimized. The reaction mechanism was proposed through free radical capture experiment and possible degradation pathway analysis. In addition, the magnetic recovery performance and stability of the catalyst were evaluated. Results showed that 85.5% of AMX could be removed within 90 min at optimal conditions. Sulfate radicals and hydroxyl radicals were the active species for AMX degradation. Moreover, the catalyst showed excellent magnetism and stability in the cycle experiment, which has great potential in the AOP treatment of antibiotic polluted wastewater.


Sign in / Sign up

Export Citation Format

Share Document