Fast True RMS Algorithm Using in the High-Voltage General Inverter

2012 ◽  
Vol 614-615 ◽  
pp. 1244-1249
Author(s):  
Zhi Fei Yu ◽  
Bing Li ◽  
Wei Wang ◽  
Shi Bao Qian

The high-voltage general inverter which has the advantage of the structure, has become the key equipment to saving energy in recent years. The inverter output current is the key variable of overload protection, over current protection and V/F control compensation, so the real-time accurate measurement of its RMS is extremely important. In this paper, the output current signals preprocess by hardware filter firstly, and then find the RMS of the current signal in the period of the waveform. Meanwhile, this algorithm belong to true RMS algorithm category, which suitable for testing harmonic current signal, and can avoid mean filter to reduce the computation time. By using this algorithm, the inverter control system provides accurate reference for overload protection reduces the systematic disoperation rate and sets the more accurate security allowance to ensure the safe operation of equipment.

2011 ◽  
Vol 317-319 ◽  
pp. 1403-1407
Author(s):  
Ting Ling Wang ◽  
Wei Liu

An intelligent measure control system is designed to solve the problem of real-time intelligent detection of thermal defects of high voltage equipment at unmanned substations. This system uses a new method that continuous power of CC2530, a ZigBee wireless single chip, is provided by using monocrystalline silicon solar cells and thermoelectric generation modules. This method can also solve the problem that overheat faults can not be alarmed timely when efficiency of solar cells decrease during the continuous rainy days, and can realize real-time wireless detection and remote fault analysis of thermal defects of high voltage equipment. The supervisory programs of the remote PC and the upper computer are designed through VC + +.NET and the communication mode adopts C/S model based on TCP/IP protocols. The image files are saved as JPEG format by CImage class, which implements the real-time transmission of images. All the forgoing advantages provide a technical assurance to the remote and intelligent control of the heat vice of high-voltage equipment in the unmanned substations.


2013 ◽  
Vol 33 (3) ◽  
pp. 866-870
Author(s):  
Xuanbing QIU ◽  
Jilin WEI ◽  
Xiaochao CUI ◽  
Chunhua XIA

1989 ◽  
Vol 7 (3) ◽  
pp. 363-367 ◽  
Author(s):  
Takaichi Koyama ◽  
Yoichi Takahashi ◽  
Masahiro Kobayashi ◽  
Junichiro Morisawa

2021 ◽  
Vol 13 (11) ◽  
pp. 2078
Author(s):  
Ning Liu ◽  
Qin Zhang ◽  
Shuangcheng Zhang ◽  
Xiaoli Wu

Real-time cycle slip detection and repair is one of the key issues in global positioning system (GPS) high precision data processing and application. In particular, when GPS stations are in special environments, such as strong ionospheric disturbance, sea, and high-voltage transmission line interference, cycle slip detection and repair in low elevation GPS observation data are more complicated than those in normal environments. For low elevation GPS undifferenced carrier phase data in different environments, a combined cycle slip detection algorithm is proposed. This method uses the first-order Gauss–Markov stochastic process to model the pseudorange multipath in the wide-lane phase minus narrow-lane pseudorange observation equation, and establishes the state equation of the wide-lane ambiguity with the pseudorange multipath as a parameter, and it uses the Kalman filter for real-time estimation and detects cycle slips based on statistical hypothesis testing with a predicted residual sequence. Meanwhile, considering there are certain correlations among low elevation, observation epoch interval, and ionospheric delay error, a second-order difference geometry-free combination cycle slip test is constructed that takes into account the elevation. By combining the two methods, real-time cycle slip detection for GPS low elevation satellite undifferenced data is achieved. A cycle slip repair method based on spatial search and objective function minimization criterion is further proposed to determine the correct solution of the cycle slips after they are detected. The whole algorithm is experimentally verified using the static and kinematic measured data of low elevation satellites under four different environments: normal condition, high-voltage transmission lines, dynamic condition in the sea, and ionospheric disturbances. The experimental results show that the algorithm can detect and repair cycle slips accurately for low elevation GPS undifferenced data, the difference between the float solution and the true value for the cycle slip does not exceed 0.5 cycle, and the differences obey the normal distribution overall. At the same time, the wide-lane ambiguity and second-order difference GF combination sequence calculated by the algorithm is smoother, which give further evidence that the algorithm for cycle slip detection and repair is feasible and effective, and has the advantage of being immune to the special observation environments.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1104
Author(s):  
Shin-Yan Chiou ◽  
Kun-Ju Lin ◽  
Ya-Xin Dong

Positron emission tomography (PET) is one of the commonly used scanning techniques. Medical staff manually calculate the estimated scan time for each PET device. However, the number of PET scanning devices is small, the number of patients is large, and there are many changes including rescanning requirements, which makes it very error-prone, puts pressure on staff, and causes trouble for patients and their families. Although previous studies proposed algorithms for specific inspections, there is currently no research on improving the PET process. This paper proposes a real-time automatic scheduling and control system for PET patients with wearable sensors. The system can automatically schedule, estimate and instantly update the time of various tasks, and automatically allocate beds and announce schedule information in real time. We implemented this system, collected time data of 200 actual patients, and put these data into the implementation program for simulation and comparison. The average time difference between manual and automatic scheduling was 7.32 min, and it could reduce the average examination time of 82% of patients by 6.14 ± 4.61 min. This convinces us the system is correct and can improve time efficiency, while avoiding human error and staff pressure, and avoiding trouble for patients and their families.


Sign in / Sign up

Export Citation Format

Share Document