Rheology, Morphology and Mechanical Properties of PA6/PP-g-MAH/POE Blends

2011 ◽  
Vol 366 ◽  
pp. 310-313
Author(s):  
Ming Tao Run ◽  
Meng Yao ◽  
Bing Tao Xing ◽  
Wen Zhou

The rheology, morphology and mechanical properties of the PA6/PP-g-MAH/POE blends prepared by twin-screw extruder were studied by rheometer, scanning electron microscopy, universal tester and impact tester, respectively. The results suggest that the impact strength is improved by the POE acting as a toughening agent, while the compatibility of PA6 and POE is improved by the compatibilizer of PP-g-MAH. Furthermore, the PP-g-MAH component also acts as a reinforcing agent for decreasing the strength depression induced by the POE component. When POE content is about 9 wt% and PP-g-MAH content is about 10% in blends, the blend has the maximum tensile strength and impact strength. All melts of PA6/PP-g-MAH/POE blends are pseudo-plastic fluids. Both the POE and PP-g-MAH components can increase the apparent viscosity of the melt due to their facility of the linear molecular.

2014 ◽  
Vol 554 ◽  
pp. 62-65 ◽  
Author(s):  
Noora Tiqah Mohamad Fauzi ◽  
Zurina Mohamad

The objective of this study is to investigate the effect of sepiolite concentration (2-10 phr) on the mechanical properties of polyamide 6 (PA6) / ethylene vinyl acetate (EVA) blend at the ratio 80/20. Twin screw extruder and injection moulding machine were used to prepare the samples. The strength and modulus of flexural was increased until 6 phr of sepiolite content. On the other hand, the impact strength of PA6/EVA/sepiolite composite was decreased gradually as sepiolite content increased.


2014 ◽  
Vol 1016 ◽  
pp. 23-33 ◽  
Author(s):  
A. Saad Najim ◽  
Nizar Jawad Hadi ◽  
Dhay Jawad Mohamed

This paper study the effect of the calcium carbonate (CaCO3) nanoparticleson mechanical and physical properties of virgin and waste polypropylene (pp.). 3, 5, 7 and 10 (wt. %) of CaCO3nanoparticles are mixed with each of virgin and waste pp.These mixture are blended in co-rotating twin screw extruder at 190 °Cand different screw speed (25 and 50 rpm). Different mechanical and physical technique are used to evaluate the characteristics of polymer nanocomposites ex: Tensile strength , elastic modulus , impact strength , hardness and density. The results of virgin pp./(CaCO3) showed that The tensile strength decreasing with nano(CaCO3) concentration for virgin pp. , while for waste increasing at 5% and then decreasing gradually. The impact strength increasing with nanoCaCO3concentration increasing. The hardness and density increasing with the increasing of the nanoCaCO3concentration for two type of pp.Nearly all the mechanical properties were found to increase with the processing speed of 25 rpm. In this studies, it was seen that the highest processing speed of 50 rpm does not give the material performance enhancements due to higher shear intensity which causes defect points in the structure. Also the time is smaller at high screw speeds, so there is not enough time for good dispersion to occur.


Author(s):  
Zahid Iqbal Khan ◽  
Zurina Binti Mohamad ◽  
Abdul Razak Bin Rahmat ◽  
Unsia Habib ◽  
Nur Amira Sahirah Binti Abdullah

This work explores a novel blend of recycled polyethylene terephthalate/polyamide 11 (rPET/PA11). The blend of rPET/PA11 was introduced to enhance the mechanical properties of rPET at various ratios. The work’s main advantage was to utilize rPET in thermoplastic form for various applications. Three different ratios, i.e. 10, 20 and 30 wt.% of PA11 blend samples, were prepared using a twin-screw extruder and injection moulding machine. The mechanical properties were examined in terms of tensile, flexural and impact strength. The tensile strength of rPET was improved more than 50%, while the increase in tensile strain was observed 42.5% with the addition of 20 wt.% of PA11. The improved properties of the blend were also confirmed by the flexural strength of the blends. The flexural strength was increased from 27.9 MPa to 48 MPa with the addition of 30 wt.% PA11. The flexural strain of rPET was found to be 1.1%. However, with the addition of 10, 20 and 30 wt.% of PA11, the flexural strain was noticed as 1.7, 2.1, and 3.9% respectively. The impact strength of rPET/PA11 at 20 wt.% PA11 was upsurged from 110.53 to 147.12 J/m. Scanning electron microscopy analysis revealed a dispersed PA11 domain in a continuous rPET matrix morphology of the blends. This work practical implication would lead to utilization of rPET in automobile, packaging, and various industries.


Natural fibers from plants are gaining importance and may substitute wood in the production of wood plastic composites (WPC). To ensure continuity of fiber supply and sustainability of WPC industries, fibers of various types could be mixed together to obtain Mix WPC. However, research need to be carried out to identify the contribution of different fiber type collectively to the mechanical properties of Mix natural fiber polymer composite (NFPC). In this study, preliminary work on the use of natural fibre (NF) such as kenaf, sugar palm and pineapple leaf fibers in the preparation of Mix NFPC were carried out. Four different fiber mix samples with different fiber ratio and size were formulated using polypropylene (PP) as the polymer matrix. Montmorrilonite (MMT) filler was added at constant amount for enhancement of composite mechanical properties. Samples were mixed and prepared using a twin screw extruder and mini injection moulding resepectively. Individual fibers and NFPC prepared were characterized using thermogravimetric analyzer (TGA). Tensile, flexural and impact strength of the composites were determined. Generally, it was found that addition of fiber mix at 50% fiber loading enhance the tensile and flexural strength of the various NFPC with minimal exceptions. The impact strength of the composites were comparable to that of blank PP implying that addition of fiber gives additional advantage besides being eco-friendly. It was also found that higher kenaf loading and different size of fiber mix contribute positively to the various strengths measured. In addition to that, composition of individual fibers also contribute to the mechanical properties of the NFPCs


2013 ◽  
Vol 747 ◽  
pp. 745-748
Author(s):  
Warangkhana Phromma ◽  
Rathanawan Magaraphan

Natural rubber (NR)/Polycaprolactone (PCL) core-shell (NR-ad-PCL), from admicellar polymerization, was as an impact modifier for the composites. PLA was mixed with NR-ad-PCL with different NR-ad-PCL contents at 5, 10, 15 and 20 wt%. PLA-based composites were prepared by co-rotating twin screw extruder. The morphology of the composites was observed by Field emission scanning electron microscope (FE-SEM). Mechanical properties of the composites were investigated by dynamic mechanical analyzer and pendulum impact tester. The impact strength of the PLA filled with NR-ad-PCL increased while modulus of the PLA composites decreased with increasing rubber contents.


2012 ◽  
Vol 545 ◽  
pp. 330-334
Author(s):  
Sirirat Wacharawichanant ◽  
Pranee Saetun ◽  
Thunwawon Lekkong ◽  
Thongyai Supakanok

This article investigated the effects of particle size of zinc oxide (ZnO) and polystyrene-co-maleic anhydride (SMA) compatibilizer on impact strength and morphology of polystyrene (PS)/ZnO71 (71 nm) and PS/ZnO250 (250 nm) nanocomposites. PS/ZnO nanocomposites with varying concentration of ZnO and SMA were prepared by a melt mixing technique in a twin screw extruder. It was found that the impact strength of PS nanocomposites increased up to a ZnO content of 1.0 wt%. Moreover, PS/ZnO250 nanocomposites had higher impact strength than PS/ZnO71 nanocomposites. The addition of SMA increased the impact strength of PS/ZnO nanocomposites with increasing SMA content. The result showed that SMA could improve impact strength of nanocomposites. The dispersion of ZnO particles on PS/ZnO nanocomposites was studied by scanning electron microscope (SEM). It was observed that the dispersion of ZnO particles of PS/ZnO nanocomposites without SMA was non-uniform and the agglomeration of ZnO particles in the polymer matrix increased with increasing ZnO content. The dispersion of ZnO particles of PS/ZnO nanocomposites after adding SMA was relatively good and only few aggregations exist. These observations support the results of the impact test where the PS/ZnO nanocomposites with SMA displayed higher impact strength than the PS/ZnO nanocomposites without SMA. The study showed that SMA was used as a compatibilizer to improve the dispersability and compatibility of ZnO particles in PS matrix.


2013 ◽  
Vol 781-784 ◽  
pp. 390-394
Author(s):  
Xiao Li Song ◽  
Ying Chen ◽  
Yu Zhi Xu ◽  
Chun Peng Wang

Polyacrylate microsphere with different core/shell ratio (mass ratio) were prepared by semi-continuous seed emulsion copolymerization using butyl acrylate (BA) and methyl methacrylate (MMA) as main monomers,which were used to toughen polylactic acid (PLA) after drying. The effect of core/shell ratio of polyacrylate toughening agent (ACR) on mechanical properties of PLA was studied. The results showed that when adding 8wt%ACR, the impact strength and elongation at break of PLA were both first increased and then decreased as increasing of core/shell ratio, while the tensile strength loss of PLA was little changed. It is found that the impact strength was increased about 24% than that of neat PLA as well as the elongation at break was increased from 2% to 12% when the ratio was 7/3, which was the best ratio.


2013 ◽  
Vol 853 ◽  
pp. 34-39
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen ◽  
Cheng Ho Chen

In this paper, epoxy, diluents, nanosilica powders and hardeners are mixed and cured form nanocomposites under different production conditions such as the amount of added nanopowders, diluents, etc. Through the use of an impact tester and a Shore durometer, the influences of the amount of added diluents and silica on mechanical properties are investigated. The results show that adding nanopowers has little effect on increasing the Shore D hardness. However, adding diluents will reduce the Shore D hardness of the composites. Without diluents, the composite added 1 wt.% of nanopowders has a maximum impact value of 6.63 KJ/m2. Adding 3.2 wt.% of diluents, the nanocomposite has a maximum impact value of 5.50 KJ/m2, also happens when the amount of added nanopowders is 1 wt.% of. Adding nanopowders more than 1 wt.% will reduce the impact strength. Nevertheless, adding nanopowders to 3 wt.%, the value is still higher than the composites without nanopowders.


2014 ◽  
Vol 1025-1026 ◽  
pp. 241-245 ◽  
Author(s):  
Ľudmila Dulebová ◽  
Emil Spišák ◽  
Branislav Duleba ◽  
František Greškovič ◽  
Tomasz Garbacz

The paper presents the impact of the use of fillers on the mechanical properties of composites with polymeric matrix from polypropylene (PP). Two main types of mineral fillers - talc and calcium carbonate - were used for experiments. PP composites of different percentage filler in matrix PP were compounded with twin-screw extruder and then injection molding. Properties of composites were investigated by tensile test and thermal analysis. Tensile strength was performed to determine and compare the mechanical properties of the unfilled PP and filled PP with various percentages of fillers. Thermal analysis by thermogravimetric was performed on the tested materials - weight loss, glass transition temperature, thermal decomposition, melting temperature.


Sign in / Sign up

Export Citation Format

Share Document