Influence of Sand Ratio on the Fluidity Properties of SCC in CRTS III Type Track System

2012 ◽  
Vol 629 ◽  
pp. 466-470 ◽  
Author(s):  
Hai Peng Gu ◽  
Gu Hua Li ◽  
Xiao Hui Zeng ◽  
Jian Qiang Cheng

In order to prepare SCC (self-compacting concrete) which is used as the packing layer in CRTS III type track system this paper primary researched the influence of sand ratio on its performance through experiments of the design of mix proportion. Test results show that when sand ratio is too small, the fluidity of SCC will be bad and the concrete will generate segregation and weeping. If sand ratio is too great, the workability of SCC will not be good either, but segregation will not occur again. The optimum range of sand ratio is 0.56 to 0.58 in this paper, while the range proposed by China Academy of Railway Sciences is 0.50 to 0.55.

2011 ◽  
Vol 250-253 ◽  
pp. 383-387
Author(s):  
Xian Yu Jin ◽  
Chuan Qing Fu ◽  
Nan Guo Jin ◽  
Fan Ge ◽  
Yi Bing Zhao

Based on the project requirement of a nuclear power plant, using the method of free shrinkage test and ring cracking test, shrinkage cracking resistance property of grade C35 and C50 self-compacting concrete (SCC) with the optimized mix proportion was studied. The test results between SCC and ordinary vibrated concrete afforded by nuclear power plant project with the same grade were compared. The results indicated that the shrinkage cracking resistance property of SCC is prior to the ordinary vibrated concrete with the same strength grade. This kind of SCC can satisfy the nuclear power plant project, also the test results can be a reference of SCC design theory.


2016 ◽  
Vol 11 (1) ◽  
pp. 119-130
Author(s):  
D.B. Nirmala ◽  
S. Raviraj

Abstract This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC) containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37) Orthogonal Arrays (OA) with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering “Nominal the better” situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.


2012 ◽  
Vol 629 ◽  
pp. 438-442 ◽  
Author(s):  
Jian Qiang Cheng ◽  
Xiao Hui Zeng ◽  
Yan Ke Yang ◽  
Hai Peng Gu

In this paper,the functions and performances of filling layer of self-compacting concrete(SCC) in CRTS(China Railway Track System)-Ⅲ type track system were introduced. Developments of SCC including design methods and test method was described in detail. The influencing factors of workability of SCC was analysised. The trends of future development of mix proportion design methods,durability evaluation admixtures,applications were discussed.This paper also pointed that it's importance for SCC to studying the quality control methods and the application.


2015 ◽  
Vol 1119 ◽  
pp. 752-755
Author(s):  
Chang Zheng Sun ◽  
Zheng Wang

Optimization of mix proportion parameter ,Using ordinary raw materials makes a C80 high performance self-compacting concrete;By joining a homemade perceptual expansion agent, significantly improve the early strength of concrete and effective to solve the high strength of self-compacting concrete caused by gelled material consumption big contraction;Further study on the working performance of high-strength self-compacting concrete, age strength, analysis the influence factors of concrete are discussed.


2008 ◽  
Vol 400-402 ◽  
pp. 433-438
Author(s):  
Nan Guo Jin ◽  
Xian Yu Jin ◽  
Xiang Lin Gu

Taking free shrinkage as the key parameter in evaluating cracking of concrete, the cracking properties of self-compacting concrete with strength grade of C35 and C50 were investigated based on ring and slab restraint tests. Meanwhile, the ultimate tensile strain of self-compacting concrete was studied by using flexural test. Experimental results show that the shrinkage of self-compacting concrete is lower than that of normal concrete. Self-compacting concrete cracks later than normal concrete with the same strength grade. Although the ultimate flexural tensile strains of self-compacting concrete in 7 d and 28 d are a little bit lower than that of the normal concrete, it can still be concluded from the research that the cracking property of self-compacting concrete can be greatly improved by using proper mix proportion.


2010 ◽  
Vol 152-153 ◽  
pp. 1176-1179 ◽  
Author(s):  
Feng Lan Li ◽  
Qian Zhu

To improve the application of the new proto-machine-made sand in structural engineering, tests are carried out to study the drying shrinkage of concrete affected by stone powder in proto- machine-made sand. The target cubic compressive strength of concrete is 55 MPa, the main factor varied in mix proportion of concrete is the contents of stone powder by mass of proto-machine-made sand from 3 % to 16 %. The drying shrinkage strains of concrete are measured by the standard method at the ages of 1 d, 3 d, 7 d, 14 d, 28 d, 60 d, 90 d, 120 d, 150 d and 180 d. Based on test results, the drying shrinkage of concrete affected by the contents of stone powder in proto-machine-made sand is analyzed and compared with that of similar test of concrete with traditional machine-made sand, which shows that there is the optimum content of stone powder resulting in the lower drying shrinkage of concrete. The formula for predicting drying shrinkage strain of concrete is proposed.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1850
Author(s):  
Jinjun Guo ◽  
Ting Guo ◽  
Shiwei Zhang ◽  
Yan Lu

The freezing and thawing of construction concrete is becoming an increasingly important structural challenge. In this study, a shrinkage-compensating concrete based on a double expansive admixture was developed and its frost resistance was assessed through rapid freezing and thawing cycling. The frost resistance of the concrete was derived through the measurement and calculation of the relative dynamic modulus of elasticity (RDME) and the mass loss rate (MLR), and the freezing- and thawing-cycle microstructures and products of concretes with different expansive agents were analyzed using scanning electron microscopy (SEM). It was shown that changes in the properties of the concrete under freezing and thawing could be divided into three stages: slow-damage stage, fast-damage stage, and stable stage. Compared to concrete without an expansive agent, a single-expansive-agent concrete demonstrated excellent frost resistance during the slow-damage stage, but the frost resistance rapidly decreased during the fast-damage age. After 150 cycles (the stable-damage stage), the concrete with a U-type expansive agent (UEA): MgO expansive agent (MEA) mix proportion of 2:1 had the best frost resistance, with RDME and MLR values 17.35% higher and 25.1% lower respectively, than that of an expansive-agent-free concrete. These test results provide a basis for the study of frost resistance in large-scale hydraulic concrete structures.


2011 ◽  
Vol 306-307 ◽  
pp. 1084-1087 ◽  
Author(s):  
Jing Li ◽  
Xian Feng Qu ◽  
Lin Fu Wang ◽  
Chong Qing Zhu ◽  
Juan Li

In order to study cubic compressive strength of recycled coarse aggregates-filled concrete systematically, recycled coarse aggregates with the particle size from 50 to150mm are made from waste solid contents, which are artificially broken from abandoned rubble and concrete blocks. Based on the mix proportion design method of ordinary concrete and test code for hydraulic concrete, 3 groups of recycled coarse aggregates-filled concrete cubic specimens were prepared and the compressive strength of the specimens were tested. The results showed that basic failure pattern of recycled coarse aggregates-filled concrete are longitudinal splitting failure, and that cubic compressive strength is higher than that of self-compacting concrete.


2011 ◽  
Vol 250-253 ◽  
pp. 1293-1296 ◽  
Author(s):  
Hong Bum Cho ◽  
Nam Yong Jee

This paper offers the model that can estimate the cementing efficiency of fly ash (k value) based on a mix proportion of concrete containing fly ash (FA). The prediction model was derived using various statistical analyses, based on a wide range of mix proportions and a number of strength test results of ready mixed concretes used in eight construction sites. The k value increases with increasing water-binder ratio. As the FA replacement ratios increase, the k value increases at FA replacement ratios of less than 15%, but decreases at ratios of 15% or more. The k values obtained from the cementing efficiency estimate model range from 0.1 to 2.1.


Sign in / Sign up

Export Citation Format

Share Document