NBO Analysis the Chlorine Anion Recognition Mechanism of the Urea-Based Involving Iodine and Fluorine Derivation Functional Molecular Material

2013 ◽  
Vol 634-638 ◽  
pp. 15-19
Author(s):  
Yan Zhi Liu ◽  
Yan Liu ◽  
Kun Yuan ◽  
Yuan Cheng Zhu

The recognition mechanism of the urea-based non-involving fluorine (A) and involving fluorine (B) derivation receptors for the chlorine anion (Cl-) was discussed by using the density function B3LYP method. The results showed that recognition mechanism was performed by using four coordination weak bonds, which include two N-H…Cl hydrogen bonds and two C-I…Cl halogen bonds. The calculated interaction energies (ΔECP) with basis set super-position error (BSSE) correction of the two systems are -121.78 and -179.71 kJ•mol-1, respectively. So, the urea-based involving fluorine derivation receptor (B) presents the better recognition capable for the Cl-. Natural bond orbital theory (NBO) analysis has been used to investigate the electronic behavior and property of the N-H…Cl hydrogen bonds and two blue-shift C-I…Cl halogen bonds in the A…Cl- and B…Cl- recognition systems, respectively.

2013 ◽  
Vol 328 ◽  
pp. 850-854
Author(s):  
Kun Yuan ◽  
Hui Xue Li ◽  
Huian Tang ◽  
Yuan Cheng Zhu

The recognition mechanism of the urea-based involving Br derivation receptor (A) for the halogen anions through hydrogen bond and halogen bond was discussed by the density function Becke, three-parameter, Lee-Yang-Parr (B3LYP) method. The results showed that the guest-host recognition was performed by using four coordination weak bonds, which include two N-H...X hydrogen bonds and two C-Br...X halogen bonds (X= F-,Cl-,Br- and I-). The calculated interaction energies (ΔECP) with basis set super-position error (BSSE) correction of the four systems are-3.95, -82.43, -70.86 and 992.63 kJmol-1, respectively. So, the urea-based derivation receptor (A) presents the best recognition capable for the Br- and Cl-, and it can not recognize the I- in the same condition. Natural bond orbital theory (NBO) analysis has been used to investigate the electronic behavior and property of the red-shift N-H...X hydrogen bonds and two blue-shift C-Br...X halogen bonds in the A...X- systems.


2019 ◽  
Vol 16 (9) ◽  
pp. 705-717
Author(s):  
Mehrnoosh Khaleghian ◽  
Fatemeh Azarakhshi

In the present research, B45H36N45 Born Nitride (9,9) nanotube (BNNT) and Al45H36N45 Aluminum nitride (9,9) nanotube (AlNNT) have been studied, both having the same length of 5 angstroms. The main reason for choosing boron nitride nanotubes is their interesting properties compared with carbon nanotubes. For example, resistance to oxidation at high temperatures, chemical and thermal stability higher rather than carbon nanotubes and conductivity in these nanotubes, unlike carbon nanotubes, does not depend on the type of nanotube chirality. The method used in this study is the density functional theory (DFT) at Becke3, Lee-Yang-Parr (B3LYP) method and 6-31G* basis set for all the calculations. At first, the samples were simulated and then the optimized structure was obtained using Gaussian 09 software. The structural parameters of each nanotube were determined in 5 layers. Frequency calculations in order to extract the thermodynamic parameters and natural bond orbital (NBO) calculations have been performed to evaluate the electron density and electrostatic environment of different layers, energy levels and related parameters, such as ionization energy and electronic energy, bond gap energy and the share of hybrid orbitals of different layers.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Karakaya ◽  
Fatih Ucun ◽  
Ahmet Tokatlı

The optimized molecular structures and vibrational frequencies and also gauge including atomic orbital (GIAO)1H and13C NMR shift values of benzoylcholine chloride [(2-benzoyloxyethyl) trimethyl ammonium chloride] have been calculated using density functional theory (B3LYP) method with 6-31++G(d) basis set. The comparison of the experimental and calculated infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectra has indicated that the experimental spectra are formed from the superposition of the spectra of two lowest energy conformers of the compound. So, it was concluded that the compound simultaneously exists in two optimized conformers in the ground state. Also the natural bond orbital (NBO) analysis has supported the simultaneous exiting of two conformers in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles) and vibrational frequencies for both the lowest energy conformers were seen to be in a well agreement with the corresponding experimental data.


2021 ◽  
Vol 34 (1) ◽  
pp. 169-182
Author(s):  
Ruchi Kohli ◽  
Rupinder Preet Kaur

In the present study, a theoretical analysis of hydrogen bond formation of ethylene glycol, thioglycol, dithioglycol with single water molecule has been performed based on structural parameters of optimized geometries, interaction energies, deformation energies, orbital analysis and charge transfer. ab initio molecular orbital theory (MP2) method in conjunction with 6-31+G* basis set has been employed. Twelve aggregates of the selected molecules with water have been optimized at MP2/6-31+G* level and analyzed for intramolecular and intermolecular hydrogen bond interactions. The evaluated interaction energies suggest aggregates have hydrogen bonds of weak to moderate strength. Although the aggregates are primarily stabilized by conventional hydrogen bond donors and acceptors, yet C-H···O, S-H···O, O-H···S, etc. untraditional hydrogen bonds also contribute to stabilize many aggregates. The hydrogen bonding involving sulfur in the aggregates of thioglycol and dithioglycol is disfavoured electrostatically but favoured by charge transfer. Natural bond orbital (NBO) analysis has been employed to understand the role of electron delocalizations, bond polarizations, charge transfer, etc. as contributors to stabilization energy.


2015 ◽  
Vol 19 (05) ◽  
pp. 651-662 ◽  
Author(s):  
Hossein Kavousi ◽  
Abdolreza Rezaeifard ◽  
Heidar Raissi ◽  
Maasoumeh Jafarpour

The effect of different electronic and structural nitrogen donors (L) on the N ( ax )- Mn - O properties in the high valent manganese-oxo meso-tetraphenylporphyrin intermediate is investigated by the density functional B3LYP method with 6-31g* basis set. The geometric structures, frontier molecular orbitals, thermodynamic parameters and physical properties such as chemical potential and chemical hardness of [( TPP )( L ) MnO ]+ complexes in the gas phase as well as water solution are calculated. Our theoretical results confirm that the Mn - O distances in [( TPP )( L ) MnO ]+ species decrease by replacing imidazoles with pyridines, amins as well as electron-poor and hindered nitrogen donors resulting from extending the Mn – N ( ax ) bonds. These results are supported by vibrational frequencies, atoms in molecules (AIM) and natural bond orbital (NBO) analysis. It is worth mentioning that the co-catalytic activity trend of different nitrogen donors observed experimentally in the presence of title Mn porphyrin is consistent with the calculated Mn – N ( ax ) and Mn – O bond lengths in this work.


2013 ◽  
Vol 634-638 ◽  
pp. 37-41
Author(s):  
Kun Yuan ◽  
Yuan Cheng Zhu ◽  
Yan Zhi Liu ◽  
Hui An Tang

The geometry structures and IR properties of the non-involving fluorine (A) and involving fluorine (B) urea-based derivation receptors used recognition for chlorine anion (Cl-) was investigated by using the density function Becke, three-parameter, Lee-Yang-Parr (B3LYP) method. The involving fluorine urea-based derivation receptor (B) presents a better recognition capable for the Cl-. In the A…Cl- recognition system, the stretch vibrational frequency of the N-H bond presents an obvious red-shift, and the red-shift value higher than 12.4 cm-1, moreover, the IR intensity increased from 8.26 km•mol-1 of the monomer to 312.12km•mol-1 of the recognition system. However, as for the C-I bonds of the halogen bond donors of the receptor molecules A and B, their stretch vibrational frequencies present the different potential shift.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Hitler Louis ◽  
Obieze C. Enudi ◽  
Joseph O. Odey ◽  
Izubundu B. Onyebuenyi ◽  
Azuaga T. Igbalagh ◽  
...  

AbstractIn this study, (E)-5-((4,6-dichloro-1,3,5-triazin-2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalene-2,7-diylbis(hydrogen sulfite), a cyanurated H-acid (CHA) azo dye, was synthesized and characterized using FT-IR spectrophotometer and GC-MS spectroscopy. A density functional theory (DFT) based B3LYP and CAM-B3LYP method with 6–311 + G (d,p) basis set analysis was computed for HOMO-LUMO, natural bonding orbitals (NBO), UV-Vis absorptions and excitation interactions, in order to understand its molecular orbital excitation properties. A low Energy gap (Eg) of 2.947 eV was obtained from the molecular orbital analysis, which showed that HOMO to LUMO transition is highly feasible; hence CHA is adequate for diverse electronic and optic applications. Studies of the first five excitations (S0 → S1/S2/S3/S4/S5) of CHA revealed that S0 → S1 and S0 → S3 are π → π* type local excitations distributed around the –N=N– group; S0 → S2, a Rydberg type local excitation; S0 → S4, a highly localized π → π* excitation; while S0 → S5 is an n → π* charge transfer from a benzene ring to –N=N– group. From NBO analysis, we obtained the various donor–acceptor orbital interactions contributing to the stabilization of the studied compound. Most significantly, some strong hyper-conjugations (n → n*) within fragments, and non-bondingand anti-bonding intermolecular (n → n*/π* and π → n*/π*) interactions were observed to contribute appreciable energies. This study is valuable for understanding the molecular properties of the azo dyes compounds and for synthesizing new ones in the future.


2019 ◽  
Vol 4 (3) ◽  
pp. 147-151
Author(s):  
J. Jani Matilda ◽  
T.F. Abbs Fen Reji

In an effort to evaluate and design fast, accurate density functional theory (DFT) methods for 5-(4- methoxyphenyl)-3-(1-methylindol-3yl)isoxazole compound was done using Gaussion’ 09 program package using B3LYP method with the 6-31G basis set, which has been successfully applied in order to derive the optimized geometry, bonding features, harmonic vibrational wave numbers, NBO analysis and Mulliken population analysis on atomic charges in the ground state. Optimized geometries of the molecule have been described and collate with the experimental values. The experimental atomic charges demonstrates adequate concurrence with the theoretical prediction from DFT. The theoretical spectra values have been interpreted and compared with the FT-IR spectra. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gaps also confirm that charge transfer takes place within the molecule.


2012 ◽  
Vol 251 ◽  
pp. 346-350
Author(s):  
Kun Yuan ◽  
Ling Ling Lv ◽  
Yuan Cheng Zhu

MP2/aug-cc-pvtz level was used to optimize geometries of the complexes between GeH4 and Y(Y=He, Ne, Ar and Kr). The structures and electronic properties of the blue-shift hydrogen bonds complexes GeH4…Y(Y=Ar, Kr) were investigated. The calculated interaction energies with basis set super-position error (BSSE) correction revealed that the relative stabilities of the complexes in the order: GeH4…He ˂ GeH4…Ne ˂ GeH4…Ar ≈ GeH4…Kr. The calculated results showed that the interactions between GeH4 and Y(Y=He, Ne)belong to van der Waals force, and those between GeH4 and Y(Y=Ar, Kr)belong to weak hydrogen bond. NBO (natural bond orbital theory) and electron behavior analysis showed that GeH4…Y(Y= Ar, Kr) hydrogen bond is with a non-electrostatic property.


2018 ◽  
Vol 22 (01n03) ◽  
pp. 207-220 ◽  
Author(s):  
Yasemin Baygu ◽  
Burak Yıldız ◽  
İzzet Kara ◽  
Hakan Dal ◽  
Yaşar Gök

New metalloporphyrazines (MgPz, ZnPz) containing peripheral tetrasubstitutions derived from 7,8-dihydro-6[Formula: see text],14[Formula: see text],19[Formula: see text]-dibenzo[bj][1,12,5,8]-dioxadithiacyclopentadecine-16,17-dicarbonitrile (6) have been synthesized by a multistep reaction sequence and characterized. Compound 6 has been prepared by the reaction of 1,3-di(2-bromomethyl phenoxy) propane (3) or 1,3-di(2-iodomethylphenoxy) propane (4) which were prepared via bromination or iodination of {2-[3-(2-hydroxymethylphenoxy)propoxy]-phenyl}methanol (2) and cis-1,2-dicyano-1,2-ethylenedithiolate (5). The novel magnesium porphyrazine was prepared by the cyclotetramerization reaction of 6 with magnesium butoxide. The one-step synthesis of porphyrazinato zinc complex has been achieved without a reaction sequence by using dicyano compound (6) and zinc butoxide. The prediction of the geometry optimization, normal mode frequencies, [Formula: see text]H, [Formula: see text]C NMR, UV absorption spectra, chemical shifts, electronic properties and NBO analysis of the compound were examined by using B3LYP method with a 6-31G([Formula: see text], [Formula: see text] basis set. These novel compounds were characterized by a combination of elemental analysis, [Formula: see text]H, [Formula: see text]C NMR, FT-IR, UV-vis and MS spectral data. An X-ray crystal structure of dicarbodinitrile compound (6) was also investigated.


Sign in / Sign up

Export Citation Format

Share Document