Study on Thermal Conductivity of Metal/Polymer Composites Based on Software ANSYS

2013 ◽  
Vol 634-638 ◽  
pp. 2056-2059
Author(s):  
Fang Qin Yang ◽  
Yang Fu Jin ◽  
Xin Qian

Heat conductive materials, which widely used in the field like electronic information, electrical engineering and aerospace, are required high thermal conductivity, excellent electrical insulation, corrosive resistance, chemical stability and so on. In this paper, metal/unsaturated polyester (UP) composite is prepared to use as heat conductive material. Capacity of composite thermal transmission is analyzed by software ANSYS and experiment. The results show that the capacity of composite thermal transmission increases with increasing metal wire diameter and metal thermal conductivity. Average error between simulation and experimental data is 6.08%.

2013 ◽  
Vol 278-280 ◽  
pp. 523-526
Author(s):  
Fang Qin Yang ◽  
Yang Fu Jin ◽  
Xin Qian

Heat conductive materials, which are widely used in the fields like electronic information, electrical engineering and aerospace, are required high thermal conductivity, excellent electrical insulation, corrosive resistance, chemical stability and so on. In this paper, steel/unsaturated polyester (UP) sandwich composite is designed to use as heat conductive material. The capacity of composite thermal transmission with steel wire arrangements in longitudinal and transverse directions are analyzed by software ANSYS. Finally, equivalent thermal conductivity of composite is calculated. The results show that capacity of composite’s thermal transmission increases quickly with increasing number of steel wire in the longitudinal direction,but it increases slowly with the increasing number of steel wire in the transverse direction.


2014 ◽  
Vol 941-944 ◽  
pp. 2478-2481
Author(s):  
Yang Fu Jin ◽  
Cheng Zhang ◽  
Xin Qian ◽  
Fang Qin Yang

Heat conductive materials, which widely used in the field like electronic information, electrical engineering and aerospace, are required high thermal conductivity, excellent electrical insulation, corrosive resistance, chemical stability and so on. In this paper, metal/unsaturated polyester (UP) sandwich composite is prepared to use as heat conductive material. Hollow and solid model are prepared to study their capacity of thermal transmission by software ANSYS and experiment. The results showed that capacity of solid model thermal transmission increased with increasing the number of wires. Equivalent thermal conductivity of solid composite model is 3 times more than that of pure UP. Heat transfer effect of hollow composite model is better than that of solid composite model, even though the latter has two layers of wires more than the former.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


2013 ◽  
Vol 1510 ◽  
Author(s):  
Selina Mala ◽  
Leonid Tsybeskov ◽  
Jean-Marc Baribeau ◽  
Xiaohua Wu ◽  
David J. Lockwood

ABSTRACTWe present comprehensive quantitative analysis of Raman spectra in two-(Si/SiGe superlattices) and three-(Si/SiGe cluster multilayers) dimensional nanostructures. We find that the Raman spectra baseline is due to the sample surface imperfection and instrumental response associated with the stray light. The Raman signal intensity is analyzed, and Ge composition is calculated and compared with the experimental data. The local sample temperature and thermal conductivity are calculated, and the spectrum of longitudinal acoustic phonons is explained.


2019 ◽  
Vol 12 (01) ◽  
pp. 1850105 ◽  
Author(s):  
Hairui Sun ◽  
Pin Lv ◽  
Chao Wang ◽  
Yunxian Liu ◽  
Xiaopeng Jia ◽  
...  

A series of binary-doped CoSb3 with Te and Se/Sn bulk compounds Co4Sb[Formula: see text]TexSny/Sey ([Formula: see text] and 0.6, [Formula: see text] and 0.3), have been successfully prepared via a simple high pressure and high-temperature (HPHT) method. And, the influence of the doping elements on the microstructure of the samples synthesized under diverse pressures and the corresponding TE performance were studied in detail. Comparing with other preparation methods, the synthesis time of HPHT was acutely shortened. The obtained samples contain more grain boundaries, lattice disorder, dislocations and the possible “nanodot”, which have positive effect on reducing thermal conductivity. The experimental data indicate that the absolute values of Seebeck coefficient increases with pressure. What’s more, the thermal conductivities show a monotone decreasing trend as the synthesis pressure rises. The minimum value obtained is 1.93[Formula: see text]Wm[Formula: see text]K[Formula: see text] at normal temperature for Co4Sb[Formula: see text]Te[Formula: see text]Se[Formula: see text] prepared under 3[Formula: see text]GPa.


1990 ◽  
Vol 112 (2) ◽  
pp. 207-211 ◽  
Author(s):  
J. W. Baish

This paper presents a three-dimensional analysis of the temperature field around a pair of countercurrent arteries and veins embedded in an infinite tissue that has an arbitrary temperature gradient along the axes of the vessels. Asymptotic methods are used to show that such vessels are thermally similar to a highly conductive fiber in the same tissue. Expressions are developed for the effective radius and thermal conductivity of the fiber so that it conducts heat at the same rate that the artery and vein together convect heat and so that its local temperature equals the mean temperature of the vessels. This result allows vascular tissue to be viewed as a composite of conductive materials with highly conductive fibers replacing the convective effects of the vasculature. By characterizing the size and thermal conductivity of these fibers, well-established methods from the study of composites may be applied to determine when an effective conductive model is appropriate for the tissue and vasculature as a whole.


Sign in / Sign up

Export Citation Format

Share Document