FEM Analysis on Concrete Column Confined by Straps of BFRP Sheets

2013 ◽  
Vol 639-640 ◽  
pp. 1083-1086
Author(s):  
Xiao Kun Wang ◽  
Hua Xin Liu ◽  
Xue Zhi Wang ◽  
Cheng Zhai

More attention has been paid on the technology of BFRP in civil engineering due to it’s unique properties, such as high strength-to-weight radio, good resistance to corrosion and convenient to construction. In order to study the properties of BFRP sheets confined concrete column ,we did it through three groups of columns subjected to axial loading tests and FEM analyses, mainly considering the effect of spacing of straps of BFRP sheets confining concrete column.The results shows that the axial compressive strength and ductility of concrete column winded by BFRP straps have all increased and the process of destruction of concrete column wrapped by BFRP is longer than that of the unconfined concrete column.

2011 ◽  
Vol 130-134 ◽  
pp. 1621-1625
Author(s):  
Hua Xin Liu ◽  
Dong Ming Wang

The technology of GFRP has received significant attentions in civil engineering due to their unique properties, such as high strength-to-weight radio, good resistance to corrosion and fatigue, convenient to construction and no additional dimension. Study the properties of GFRP confining concrete column through eight groups of columns subjected to axial loading, the effect of width of straps and spacing of straps of GFRP sheets confining concrete column is analyesed. The results are the axial compressive strength and ductility of concrete prism wrapped by GFRP sheets or GFRP straps have all increased to a certain degree, the process of destruction of concrete prism wrapped by GFRP become slower than common concrete prism.


2011 ◽  
Vol 299-300 ◽  
pp. 422-426
Author(s):  
Xue Ying Jiao

Study the properties of GFRP confining concrete column through eight groups columns subjected to axial loading, and receive the stress-strain curves; various design parameters, such as amounts of GFRP sheets, width of straps and spacing of straps, have been considered. The results are: The axial compressive strength and ductility of concrete prism wrapped by GFRP sheets or GFRP straps have all increased to a certain degree, the process of destruction of concrete prism wrapped by GFRP become slower than common concrete prism. Based on the test results, deducing and validating the stress-strain relationship model of GFRP confining concrete prism.


Alloy Digest ◽  
1986 ◽  
Vol 35 (5) ◽  

Abstract Copper Alloy No. C86100 is a copper-zinc-aluminum-manganese-iron alloy, sometimes classified as a high-strength yellow brass. The principal strengthening element is aluminum. Its tensile strength is typically 95,000 psi (655 MPa). It has a good combination of strength and ductility along with good resistance to corrosion. Its typical uses are marine castings, gears, gun mounts, bearing and bushings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-510. Producer or source: Copper alloy foundries.


Alloy Digest ◽  
1985 ◽  
Vol 34 (7) ◽  

Abstract Copper Alloy No. C86700 is a free-machining, high-tensile (typically 85,000 psi) cast manganese bronze; it is also known as high-strength yellow brass. It has an excellent combination of strength and ductility and good resistance to corrosion in numerous environments, including seawater. Typical uses are valve stems, moderate-duty gears and marine components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-499. Producer or source: Copper alloy foundries.


2019 ◽  
Vol 15 (1) ◽  
pp. 65-83
Author(s):  
Rana Faisal Tufail ◽  
Xiong Feng ◽  
Muhammad Zahid

Abstract The use of rubberized concrete (RuC) is an effective environmental approach to reduce the amount of scrap tires around the world. However, there are serious concerns regarding the compressive strength of RuC. This article investigates the use of externally bonded carbon fiber reinforced polymer (CFRP) jackets on RuC to develop a novel high strength and deformable CFRP confined RuC. In this study, 66 RuC cylinders were cast with 0, 10, 20, 30, 40 and 50% fine or coarse rubber to replace mineral aggregates. The RuC cylinders were then confined with one, two or three layers of CFRP jackets. The results indicated 208% high lateral strains in unconfined RuC as compared to the conventional concrete. CFRP jacketing was highly effective for enhancing the compressive strength and deformation capacity of RuC, where high compressive strength enhancement of 52 MPa and deformation capacity (317% axial strain) was achieved. The confined compressive strength test results were compared with the strength models to assess their validity for CFRP confined RuC. An analysis-oriented strength model was developed to predict the axial compressive strength of RuC confined by CFRP jackets. Overall, this study demonstrated the potential of using CFRP-confined RuC as a new structural material with improved strength and deformation.


2019 ◽  
Vol 22 (12) ◽  
pp. 2605-2619
Author(s):  
Denghu Jing ◽  
Shuangyin Cao ◽  
Theofanis Krevaikas ◽  
Jun Bian

This article proposes a new connection between a steel bearing and a reinforced concrete column, which is mainly used for provisionally providing jack support in existing reinforced concrete structures. In this suggested connection joint, the steel bearing consisted of two or four symmetrical components assembled by high-strength bolts, which surrounds the reinforced concrete column by a tapered tube and balances the vertical load via the friction force between the tapered tube and concrete, that is, through a self-locking mechanism. The proposed connection joint can be assembled easily at a construction site and can also be disassembled and reused many times. To demonstrate the feasibility of this type of connection joint, a simple test was conducted to illustrate the concept, that is, a total of four medium-scale steel bearing–reinforced concrete column connections with circular cross sections were fabricated and tested under axial loading. The test results showed that the steel bearing–reinforced concrete column connection based on self-locking mechanism exhibited good working performance. Furthermore, a simplified formula to predict the axial stiffness of the connection joint was presented. From the tests and the proposed formula, the most important factors that influence the axial stiffness of this type of connection joint on the premise of an elastic working state are the slope of the tapered tube, the height of the steel bearing, the thickness of the tapered tube, the cross section of the reinforced concrete column, the cross-sectional area of all the connecting bolts, the proportion of the number of top bolts, the area of the top ring plate, and the effective contact area ratio.


2009 ◽  
Vol 36 (4) ◽  
pp. 565-579 ◽  
Author(s):  
Patrick Paultre ◽  
Denis Mitchell

This paper presents the background experimental and analytical research that was carried out to develop the provisions for the seismic design of high-strength concrete structures in the 2004 Canadian standard CSA A23.3–04. It is noted that the 1994 Canadian standard CSA A23.3–94 limited the concrete compressive strength to 55 MPa for the seismic design of nominally ductile and ductile structures, while the 1995 New Zealand Standard limited the concrete compressive strength to 70 MPa. In contrast, the 2008 American Concrete Institute (ACI) code ACI 318M has no upper limit on concrete strength, even for the seismic design of ductile structural elements. This tremendous variation in these limits indicated that more experimental evidence was needed. This paper presents experimental results of reversed cyclic loading tests on large-scale structural components as well as simulated seismic loading tests of a frame structure constructed with high-strength concrete. The goal of this collaborative research program at the University of Sherbrooke and McGill University was to determine the seismic design and detailing requirements for high-strength concrete structures to achieve the desired level of ductility and energy dissipation. The experimental programs include full-scale testing of the following: columns subjected to a pure axial load (square and circular columns); columns subjected to flexure and axial loads; beam-column subassemblages (square and circular columns); coupling beams in coupled wall structures; shear walls and a two-storey, three-dimensional frame structure. The results of the responses of the high-strength concrete structural specimens are compared with the responses of companion specimens constructed with normal-strength concrete.


2020 ◽  
Vol 26 (6) ◽  
pp. 564-578
Author(s):  
Chongchi Hou ◽  
Wenzhong Zheng ◽  
Wei Chang

This paper tested the behaviour of 32 high-strength concrete columns confined by high-strength spirals under concentric compression. The test parameters included unconfined concrete compressive strength, spiral yield strength, volumetric ratio, and spiral spacing. The results showed that bulging and shear sliding were the two characteristic types of failure patterns of the thirty-two confined columns, depending on spiral spacing and concrete strength. Moreover, the spiral in most specimens did not yield at the confined concrete compressive strength. An analytical confinement model for high-strength concrete columns confined by high-strength spirals was proposed. In this proposed model, the calculated value of the spiral stress at the confined concrete compressive strength was used to calculate the feature points of the stressstrain curve. The proposed model showed good correlations with available experimental results of 64 columns.


Sign in / Sign up

Export Citation Format

Share Document