Research on Temperature Stress of Annular Super-Long Frame Structure by Finite Element Method

2013 ◽  
Vol 639-640 ◽  
pp. 1200-1205 ◽  
Author(s):  
Zhi Yong Yang ◽  
Liang Zhao ◽  
Peng Zhang ◽  
Yu Xiang Xing

The temperature stress calculation of multi-storey structure is very complicated. Many researches have been taken for the frame structures with rectangular plane, but very few references about annular plane. Based on the ANSYS program, the structure temperature effect of a multi-storey reinforced concrete frame which plane shaped like the elliptic is analyzed in this paper. The overall temperature load and concrete shrinkage equivalent temperature are considered in the analysis. The results reflect that curvature has an apparent influence on the temperature stress of annular super-long structure. Besides, the structure temperature effects are studied on both cases of the structure with expansion joint and without it, which shows that reasonable installation of expansion joint can decrease the temperature stress of annular structure. The influence of structure member rigidity on temperature effect is also discussed by changing the size of the section; all of these could offer reference for engineering design.

2014 ◽  
Vol 1065-1069 ◽  
pp. 1226-1229
Author(s):  
Yong Sheng Zhang ◽  
Yan Ying Li

Basing on the finite element analysis software, the emergence of crack under the effect of gradual changed temperature load and the change of stress which are in the condition of super reinforced concrete frame structure are analyzed from the linear and nonlinear numeral simulation. The simulation shows that the structure component under the normal condition is cracked and turn into the nonlinear condition and the steel bars still works under the elastic stage. Meanwhile the actual stage which is reflected by the elastic-plastic analysis of the internal force and deformation is compared by the results which are obtained by the actual project observed results and the calculation of the simplified model. So the distribution of the stress which is caused by the structure temperature reduction is greatly evaluated by the usage of the cracking model which is nonlinear finite element and also plays an important role in the engineering project and practice.


2006 ◽  
Vol 13-14 ◽  
pp. 195-200
Author(s):  
Athanasios Anastasopoulus ◽  
S. Bousias ◽  
A. Tsimogiannis ◽  
T. Toutountzakis

Acoustic Emission (AE) monitoring was performed during Pseudo-Dynamic Testing of a torsionally unbalanced, two-storey, one-by-one bay reinforced concrete frame structure. The structure represented a 0.7-scale model of a real-size frame structure designed and detailed according to the standards prevailing in Greece in 60's, without engineered earthquake resistance. Real time monitoring of AE activity versus the complex applied load resulted in semi quantitative damage characterization as well as comparative evaluation of the damage evolution of the different size columns. Evolution of the AE energy rate per channel, as revealed from zonal location, and the energy rate of linearly located sources enabled the identification of damage areas and the forecast of crack locations before cracks were visible with naked eye. In addition to that, the results of post processing evaluation allowed for the verification of the witnessed damaged areas and formed the basis for quantitative assessment of damage criticality.


2014 ◽  
Vol 556-562 ◽  
pp. 712-715
Author(s):  
Jing Zhao ◽  
Jing Zhao ◽  
Xing Wang Liu

In collapse-resistant design of a structure under accidental local action, it is important to understand the failure mechanism and alternative load paths. In this paper, a pseudo-static experimental method is proposed. Based on which, the collapse of frame structure was simulated with testing a 1/3 scale; 4-bay and 3-story plane reinforced concrete frame. In the experience, the middle column of the bottom floor was replaced by mechanical jacks to simulate its failure, and the simulated superstructure’s gravity load acted on the column of the top floor by adopting a servo-hydraulic actuator with force –controlled mode.


2011 ◽  
Vol 255-260 ◽  
pp. 2421-2425
Author(s):  
Qiu Wei Wang ◽  
Qing Xuan Shi ◽  
Liu Jiu Tang

The randomness and uncertainty of seismic demand and structural capacity are considered in demand-capacity factor method (DCFM) which could give confidence level of different performance objectives. Evaluation steps of investigating seismic performance of steel reinforced concrete structures with DCFM are put forward, and factors in calculation formula are modified based on stress characteristics of SRC structures. A regular steel reinforced concrete frame structure is analyzed and the reliability level satisfying four seismic fortification targets are calculated. The evaluation results of static and dynamic nonlinear analysis are compared which indicates that the SRC frame has better seismic performance and incremental dynamic analysis could reflect more dynamic characteristics of structures than pushover method.


2012 ◽  
Vol 204-208 ◽  
pp. 869-871
Author(s):  
Cai Hua Wang ◽  
Hui Jian Li ◽  
Jian Feng Wu

The multi-storey reinforced concrete frame structure used lead rubber pad as the base isolation device. The paper had modal analysis of base-isolated multi-storey reinforced concrete frame structure using the ANSYS software. Comparing the frequency and vibration mode before and after isolation under El-Centro wave, It concluded the leader rubber pad have seismic isolation effect for multi-storey reinforced concrete frame structure .


Sign in / Sign up

Export Citation Format

Share Document