The Error Analysis of GPS-RTK Construction Stakeout

2013 ◽  
Vol 655-657 ◽  
pp. 1884-1888
Author(s):  
Jin Hong Xu ◽  
Ruo Li Yang ◽  
Bei Bei Zhang

GPS-RTK technology with real-time , high positioning accuracy and easy to operate features, is widely used in the filed of surveying and mapping; With the improvement of RTK technology, the initialize speed , results accuracy and reliability of the RTK survey will be increasingly higher.Due to the impact of the satellite signal and the external environment, the deviation of the RTK positioning and the lack of necessary checking conditions in RTK surveying, this paper will do some researches and analyses about RTK positioning error to serve the Survey and Mapping Engineering better.

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 924 ◽  
Author(s):  
Pietro Catania ◽  
Antonio Comparetti ◽  
Pierluigi Febo ◽  
Giuseppe Morello ◽  
Santo Orlando ◽  
...  

Global Navigation Satellite Systems (GNSS) allow the determination of the 3D position of a point on the Earth’s surface by measuring the distance from the receiver antenna to the orbital position of at least four satellites. Selecting and buying a GNSS receiver, depending on farm needs, is the first step for implementing precision agriculture. The aim of this work is to compare the positioning accuracy of four GNSS receivers, different for technical features and working modes: L1/L2 frequency survey-grade Real-Time Kinematic (RTK)-capable Stonex S7-G (S7); L1 frequency RTK-capable Stonex S5 (S5); L1 frequency Thales MobileMapper Pro (TMMP); low-cost L1 frequency Quanum GPS Logger V2 (QLV2). In order to evaluate the positioning accuracy of these receivers, i.e., the distance of the determined points from a reference trajectory, different tests, distinguished by the use or not of Real-Time Kinematic (RTK) differential correction data and/or an external antenna, were carried out. The results show that all satellite receivers tested carried out with the external antenna had an improvement in positioning accuracy. The Thales MobileMapper Pro satellite receiver showed the worst positioning accuracy. The low-cost Quanum GPS Logger V2 receiver surprisingly showed an average positioning error of only 0.550 m. The positioning accuracy of the above-mentioned receiver was slightly worse than that obtained using Stonex S7-G without the external antenna and differential correction (maximum positioning error 0.749 m). However, this accuracy was even better than that recorded using Stonex S5 without differential correction, both with and without the external antenna (average positioning error of 0.962 m and 1.368 m).


2012 ◽  
Vol 249-250 ◽  
pp. 175-179
Author(s):  
Ren Zhong Pei ◽  
Deng Hua Li ◽  
Ke Ke Duan

Two-position north determining scheme for FOG north seeker can effectively eliminate the impact of drift, and can be easily implemented. But the angle between the base and the horizontal plane will induce tilt error and reduce the north seeking accuracy. In order to eliminate the tilt error and to improve the north seeking accuracy, the corresponding tilt compensation scheme is designed in this paper. A tilt sensor is used to measure the angle between the base and the horizontal plane, and the DSP is used to collect the output of the tilt sensor and solve real-time compensation. North seeking experiments proved that this tilt compensation scheme can compensate the base plane tilt error, and improve the north seeking accuracy effectively.


2014 ◽  
Vol 644-650 ◽  
pp. 4591-4594
Author(s):  
Jian Zhou ◽  
Xing Cun Wu

Firstly, this paper introduces the common methods and accounts for the advantage of ionosphere grid products for correcting ionosphere errors with single-frequency GPS, according the analysis that ionosphere grid product can effectively ameliorate errors of single-frequency GPS navigation and positioning. In detail, this article gives the establishment, forecast and operation methods of ionosphere grid products, and introduces the method that calculates the VTEC (Vertical Total Electronic Contents) values of the geocentric latitude of the ionospheric pierce point, the VTEC values of four-point interpolation models and the single-layer mapping function. It’s also compares different pairs of ionosphere correction data and satellite ephemeris which use to analyze the impact of real-time positioning accuracy of single-frequency GPS. The experiments prove that the predicted ionosphere grid products can obviously improve the precision for single-frequency users, and have some practical values for single-frequency positioning and orbit determination.


2018 ◽  
Vol 176 ◽  
pp. 01040
Author(s):  
Yao Fan ◽  
Wenxiang Liu ◽  
Wei Xiao ◽  
Guangfu Sun

When using RDSS positioning under elevation constraints, traditional positioning accuracy estimation methods may not reflect the impact of satellite ranging error and elevation error on positioning performance accurately. In order to evaluate RDSS positioning performance more accurately, the RDSS positioning principle is presented, and the weighted position dilution of precision (WPDOP) is used to replace the traditional algorithm. The positioning error calculated by WPDOP is closer to actual results, indicating better prediction capability of positioning performance. Under different elevation error conditions, the position dilution of precision (PDOP) distribution of the service area indicates that the difference between the two precision factors is mainly affected by the elevation error and latitude, while the influence of longitude is small.


Author(s):  
Ruxandra Calapod Ioana ◽  
Irina Bojoga ◽  
Duta Simona Gabriela ◽  
Ana-Maria Stancu ◽  
Amalia Arhire ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 790-791
Author(s):  
Cunhyeong Ci ◽  
◽  
Hyo-Gyoo Kim ◽  
Seungbae Park ◽  
Heebok Lee
Keyword(s):  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 778-P
Author(s):  
ZIYU LIU ◽  
CHAOFAN WANG ◽  
XUEYING ZHENG ◽  
SIHUI LUO ◽  
DAIZHI YANG ◽  
...  

2007 ◽  
Vol 30 (4) ◽  
pp. 51 ◽  
Author(s):  
A. Baranchuk ◽  
G. Dagnone ◽  
P. Fowler ◽  
M. N. Harrison ◽  
L. Lisnevskaia ◽  
...  

Electrocardiography (ECG) interpretation is an essential skill for physicians as well as for many other health care professionals. Continuing education is necessary to maintain these skills. The process of teaching and learning ECG interpretation is complex and involves both deductive mechanisms and recognition of patterns for different clinical situations (“pattern recognition”). The successful methodologies of interactive sessions and real time problem based learning have never been evaluated with a long distance education model. To evaluate the efficacy of broadcasting ECG rounds to different hospitals in the Southeastern Ontario region; to perform qualitative research to determine the impact of this methodology in developing and maintaining skills in ECG interpretation. ECG rounds are held weekly at Kingston General Hospital and will be transmitted live to Napanee, Belleville, Oshawa, Peterborough and Brockville. The teaching methodology is based on real ECG cases. The audience is invited to analyze the ECG case and the coordinator will introduce comments to guide the case through the proper algorithm. Final interpretation will be achieved emphasizing the deductive process and the relevance of each case. An evaluation will be filled out by each participant at the end of each session. Videoconferencing works through a vast array of internet LANs, WANs, ISDN phone lines, routers, switches, firewalls and Codecs (Coder/Decoder) and bridges. A videoconference Codec takes the analog audio and video signal codes and compresses it into a digital signal and transmits that digital signal to another Codec where the signal is decompressed and retranslated back into analog video and audio. This compression and decompression allows large amounts of data to be transferred across a network at close to real time (384 kbps with 30 frames of video per second). Videoconferencing communication works on voice activation so whichever site is speaking has the floor and is seen by all the participating sites. A continuous presence mode allows each site to have the same visual and audio involvement as the host site. A bridged multipoint can connect between 8 and 12 sites simultaneously. This innovative methodology for teaching ECG will facilitate access to developing and maintaining skills in ECG interpretation for a large number of health care providers. Bertsch TF, Callas PW, Rubin A. Effectiveness of lectures attended via interactive video conferencing versus in-person in preparing third-year internal medicine clerkship students for clinical practice examinations. Teach Learn Med 2007; 19(1):4-8. Yellowlees PM, Hogarth M, Hilty DM. The importance of distributed broadband networks to academic biomedical research and education programs. Acad Psychaitry 2006;30:451-455


1998 ◽  
Vol 37 (1) ◽  
pp. 347-354 ◽  
Author(s):  
Ole Mark ◽  
Claes Hernebring ◽  
Peter Magnusson

The present paper describes the Helsingborg Pilot Project, a part of the Technology Validation Project: “Integrated Wastewater” (TVP) under the EU Innovation Programme. The objective of the Helsingborg Pilot Project is to demonstrate implementation of integrated tools for the simulation of the sewer system and the wastewater treatment plant (WWTP), both in the analyses and the operational phases. The paper deals with the programme for investigating the impact of real time control (RTC) on the performance of the sewer system and wastewater treatment plant. As the project still is in a very early phase, this paper focuses on the modelling of the transport of pollutants and the evaluation of the effect on the sediment deposition pattern from the implementation of real time control in the sewer system.


Sign in / Sign up

Export Citation Format

Share Document