Shear Reinforcing Influence of GFRP Shear Connectors in the Concrete Sandwich Wall Panel (CSWP) for Exterior Envelopes of Buildings

2013 ◽  
Vol 658 ◽  
pp. 38-41 ◽  
Author(s):  
Tae Sik Oh ◽  
Seok Joon Jang ◽  
Hyun Do Yun

This paper summarizes the experimental results of concrete sandwich wall panels (CSWP)specimens under pull-out loading conducted to investigate the effect of insulation type and reinforcing area of shear connector made with glass fiber-reinforced polymer (GFRP) on the shear behavior of CSWP used as exterior cladding walls.In this study, two types of thermal insulations;expanded polystyrene(EPS)and extruded polystyrene with special slots(XPSS) and wave-shaped GFRP shear connectors with different reinforcing area; 6mm x 2mm and 12mm x 2mm were used for CSWP specimens.Test results indicated that the types of insulations and reinforcing area of GFRP shear connectors have a significant effect on the direct shear behavior between concrete wall and insulation. As reinforcing area of GFRP shear connector increase, increase in shear strength of CSWP with EPS insulation is less than CSWP specimens with XPSS insulation due to relatively lower strength of EPS compared to XPSS strength.

2012 ◽  
Vol 204-208 ◽  
pp. 803-806 ◽  
Author(s):  
Hyun Do Yun ◽  
Seok Joon Jang ◽  
Young Chan You

This paper investigates shear flow strength of insulated concrete sandwich panels with glass fiber reinforced polymer (GFRP) shear connectors based on push-out test. The precast insulated concrete panels consist of 60mm concrete wall, 100mm insulation, and 130mm concrete wall. Two concrete walls were connected with GFRP corrugated shear connector. Four specimens with variables such as the insulation type and the width of GFRP corrugated shear connector were made. Failure modes, shear flow-deflection relationships and post-peak strength were investigated. Test results indicate that the specimens with EPS insulation show higher shear flow strength than those with XPSS insulation due to the relatively high surface roughness of EPS insulation, and the shear flow strength increased with increasing shear connector width.


2013 ◽  
Vol 658 ◽  
pp. 46-49 ◽  
Author(s):  
Seok Joon Jang ◽  
Young Chan You ◽  
Hyun Do Yun

This paper describes the test results on the direct shear behavior of glass-fiber reinforced polymer (GFRP) shear tie reinforced interfaces between precast concrete sandwich panels (PCSP) and extruded polystyrene (XPS) insulations. The insulated PCSP consists of two concrete panels with 100mm or 80mm thick insulation between inner/outer concrete panel layers. In order to achieve composite action concrete panels are connected by corrugated GFRP shear connector. In this study, three types of couple replicate insulated PCSP with different embedment length of GFRP shear connector were made and loaded in push-out. The test results indicated that the reinforcement of GFRP shear ties for interface between PCSP and XPS insulation improves initial and post-peak shear performance of insulated PCSPs. These phenomena are remarkable for XPS insulated PCSPs with larger embedment length of GFRP shear connectors.


2014 ◽  
Vol 525 ◽  
pp. 416-419 ◽  
Author(s):  
Hye Ran Kim ◽  
Dae Hyun Kang ◽  
Hyun Do Yun

This paper reports the experimental results to evaluate in-plane shear performance of insulated concrete sandwich panel (ICSP) with glass fiber-reinforced polymer (GFRP) grid shear connectors. The variables considered in this study are the grid size (35 and 53mm) of GFRP shear connectors and the types of insulation (expanded polystyrene, EPS and extruded polystyrene with special slots, XPSS). For loading in-plane shear force to interface between inner and outer wall of ICSP system, the ICSP specimens were supported vertically at the bottom edge of the two concrete outer walls by steel blocks. The test results indicate that ICSP with XPSS developed higher shear flow strengths in ICSP with EPS when 35mm spacing of GFRP grid is used. Also, the test results indicated that as the grid spacing of GFRP shear connector decreases, the shear flow strength of ICSP with XPSS insulation was higher, but the shear flow strength of ICSP with EPS insulation was lower.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ao Zhou ◽  
Kwun-Wah Wong ◽  
Denvid Lau

Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.


2013 ◽  
Vol 663 ◽  
pp. 154-158 ◽  
Author(s):  
Tae Sik Oh ◽  
Seok Joon Jang ◽  
Kang Min Lee ◽  
Hyun Do Yun

Precast concrete sandwich panels (PCSP) are often used as exterior cladding of residential buildings due to thermal efficiency. PCSP systems consist of two precast reinforced concrete walls separated by a layer of insulation and connected with connectors which penetrate the insulation layer and are anchored at two precast walls. This paper provides the pull-out test results of concrete sandwich panel (CSP) with non-shear connectors. The variables in this study were the casting direction of reinforced concrete walls and types of insulation. Test results indicated that the types of insulations and casting direction have a significant effect on the bond strength between concrete wall and insulation. The effect of insulation type is notable for CSP cast horizontally concrete walls.


2019 ◽  
Vol 9 (4) ◽  
pp. 764 ◽  
Author(s):  
Shuangjie Zheng ◽  
Yuqing Liu ◽  
Yangqing Liu ◽  
Chen Zhao

To ease the installation of perforating rebars through multi-holes, an alternative notched perfobond shear connector was proposed by cutting out the hole edge. This paper presents the test results of six pull-out specimens with conventional and notched perfobond shear connectors. The objective was to compare the failure modes and pull-out behaviors of perfobond shear connectors using circular holes and notched holes. Furthermore, the explicit finite element method was introduced and validated to generate parametric results for pull-out tests of notched perfobond shear connectors. A total of 33 parametric simulations were performed to further study the influences of several variables, including the hole diameter, the cut width, the perfobond thickness, the concrete strength, the diameter and strength of the rebar, and the strength of the structural steel. The experimental and numerical results were used to evaluate the previous equations for perfobond shear connectors. Finally, an alternative equation was proposed to estimate the pull-out resistance of notched perfobond shear connectors.


2015 ◽  
Vol 764-765 ◽  
pp. 1026-1030
Author(s):  
Doo Yong Cho ◽  
Jin Woong Choi ◽  
Sun Kyu Park

For safe and efficient use of the Perfobond Rib shear connector, it is essential to investigate mechanical behaviors and evaluate performance of shear resistance. When the Perforbond Rib shear connectors are to be used for a structure, they show flexural-shear behavior due to external force rather than direct shear behavior. Therefore, this study performed a direct shear test and proposed the equation for the shear resistance assessment. Also, a flexural shear test was conducted. Through the direct shear test, main factors that affect directly shear resistance were found. The flexural shear stress and the direct shear stress were calculated and it is revealed that the flexural shear stress is approximately 6% stronger than the direct shear stress.


Sign in / Sign up

Export Citation Format

Share Document