Study on Cross-Linking Degree of Polyethylene

2013 ◽  
Vol 658 ◽  
pp. 56-60
Author(s):  
Li Qiu Zou ◽  
Guang Feng Wu

In this paper, the linear low density polyethylene (LLDPE) was melted and cross-linked by dicumyl peroxide (DCP) used to prepare cross-linked polyethylene (XPE). The gel content was determined by extraction method. The effect of content of cross-linker, cross- linked time, cross-linked temperature and other factors on the gel content were studied. It was found that the extraction time should be 18h for XPE. The gel content increased with the increasing of cross-linked time. When the cross-linked time was 10-15min, DCP was almost complete decomposition. The gel content was basically stable when the cross-linked temperature was 170-175 oC. The maximum of gel fraction was about 90%.

2013 ◽  
Vol 634-638 ◽  
pp. 1037-1043 ◽  
Author(s):  
Xiao Xue ◽  
Qing Xiu Jia ◽  
Guo Liang Zhao

In this work, a new bio-based hybrid polyamide (BDIS) was prepared and was cross-linked by dicumyl peroxide (DCP) with dose ranging from 1 to 7%. The state of cure was observed in vulcameter, and the vulcanization condition was determined subsequently. The cross-linking efficiency of BDIS/DCP blends was assessed using torque, gel content measurements and infrared spectroscopy (FTIR). DCP dose below 1% was not sufficient to reach gelation. Over 1%, the gel content increased with increasing DCP dose. The cross-linked BDIS films exhibited enhanced toughness and mechanical properties compared to precursors. Optimal mechanical properties were obtained with concentration of about 5 wt % DCP. At higher doses, the tensile strength and the elongation at break were decreased due to scission reactions.


2009 ◽  
Vol 49 (4) ◽  
pp. 673-679 ◽  
Author(s):  
Le-Ping Huang ◽  
Xing-Ping Zhou ◽  
Wei Cui ◽  
Xiao-Lin Xie ◽  
Shen-Yi Tong

2009 ◽  
Vol 4 (2) ◽  
pp. 169-177
Author(s):  
Chen-Feng Kuan ◽  
Hsu-Chiang Kuan ◽  
Chen-Chi M. Ma ◽  
Chia-Hsun Chen ◽  
Kun-Chang Lin ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 478
Author(s):  
Gjylije Hoti ◽  
Fabrizio Caldera ◽  
Claudio Cecone ◽  
Alberto Rubin Pedrazzo ◽  
Anastasia Anceschi ◽  
...  

The cross-linking density influences the physicochemical properties of cyclodextrin-based nanosponges (CD-NSs). Although the effect of the cross-linker type and content on the NSs performance has been investigated, a detailed study of the cross-linking density has never been performed. In this contribution, nine ester-bridged NSs based on β-cyclodextrin (β-CD) and different quantities of pyromellitic dianhydride (PMDA), used as a cross-linking agent in stoichiometric proportions of 2, 3, 4, 5, 6, 7, 8, 9, and 10 moles of PMDA for each mole of CD, were synthesized and characterized in terms of swelling and rheological properties. The results, from the swelling experiments, exploiting Flory–Rehner theory, and rheology, strongly showed a cross-linker content-dependent behavior. The study of cross-linking density allowed to shed light on the efficiency of the synthesis reaction methods. Overall, our study demonstrates that by varying the amount of cross-linking agent, the cross-linked structure of the NSs matrix can be controlled effectively. As PMDA βCD-NSs have emerged over the years as a highly versatile class of materials with potential applications in various fields, this study represents the first step towards a full understanding of the correlation between their structure and properties, which is a key requirement to effectively tune their synthesis reaction in view of any specific future application or industrial scale-up.


2015 ◽  
Vol 37 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
S. Sánchez-Valdes ◽  
E. Ramírez-Vargas ◽  
L.F. Ramos de Valle ◽  
J.G. Martinez-Colunga ◽  
J. Romero-Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document