Software Reliability Test Methods Based on Component Composition and Markov Process

2013 ◽  
Vol 660 ◽  
pp. 169-173 ◽  
Author(s):  
Zhi Jie Gao ◽  
Fu Chun Sun ◽  
Ling Lu

With the continuous improvement of the software quality requirements, more and more attentions are paid to the reliability of software systems. Most of the existing reliability models rely on the cumulative test time to characterize the reliability improvement, while ignoring the saturation effects and software module failure characteristic differences exist, making the test results to low confidence. In this paper, Markov description methods are utilized in reliability calculating process to improve the fictitious-excellence problem in current testing models. Finally, the method is applied to a flight control system software reliability testing. The results demonstrate the effectiveness of the method.

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 791
Author(s):  
Willem Dirk van Driel ◽  
Jan Willem Bikker ◽  
Matthijs Tijink ◽  
Alessandro Di Bucchianico

It is known that quantitative measures for the reliability of software systems can be derived from software reliability models, and, as such, support the product development process. Over the past four decades, research activities in this area have been performed. As a result, many software reliability models have been proposed. It was shown that, once these models reach a certain level of convergence, it can enable the developer to release the software and stop software testing accordingly. Criteria to determine the optimal testing time include the number of remaining errors, failure rate, reliability requirements, or total system cost. In this paper, we present our results in predicting the reliability of software for agile testing environments. We seek to model this way of working by extending the Jelinski–Moranda model to a “stack” of feature-specific models, assuming that the bugs are labeled with the features they belong to. In order to demonstrate the extended model, two use cases are presented. The questions to be answered in these two cases are: how many software bugs remain in the software and should one decide to stop testing the software?


Author(s):  
Valery V. Gurov ◽  

Currently, various types of educational software are widely introduced into the educati?onal process of all higher education institutions, from lecture support tools, practical and laboratory classes to assessing students’ knowledge. In addition to programs developed and distributed (for a fee or free of charge) by large companies, each University has a wi?despread practice when a number of such programs are written by relatively small teams of their own developers, who take into account the existing methods of teaching certain disciplines in this university and are able to respond quickly to constantly changing requi?rements for the educational process. In the latter case, developers face a two-fold task. On the one hand, they need to create the necessary product as quickly as possible, but on the other hand, it must meet the necessary quality requirements, including reliability. Various reliability models are used to evaluate this parameter. In particular, the Mills model can be used at the early stages of creating a software module. One of its di?sadvantages in this area is that in order to assess the reliability of the result given by this model, it is desirable to know the expected initial number of errors in the program. This value can be obtained using a simple intuitive software reliability model that does not require a complex log of monitoring the progress of testing and does not require complex calculations. The paper shows how it is possible to combine the use of these models into a single hierarchical model that can be effectively used in the subject area under consideration.


Author(s):  
Sangeeta ◽  
Kapil Sharma ◽  
Manju Bala

Background: oftware industries are growing very fast to develop new solutions and ease people’s life. Software reliability has been considered as a critical factor in today’s growing digital world. Software reliability models are one of the most generally used mathematical tools for estimation of software reliability. These reliability models can be applied on development of sustainable and green computing-based software’s having their constrained development environments. Objective: This paper proposes a new reliability estimation model for green IT environment based software systems. Methods: In this paper, a new failure rate behavior-based model centered on green software development life cycle process has been developed. This model integrates a new modulation factor for incorporating changing needs in each phase of green software development methodology. Parameter estimation for proposed model has been done using hybrid Particle Swarm Optimization and Gravitational Search Algorithm. The proposed model has been tested on real-world datasets. Results: Experimental results are showing the enhanced capability of proposed model in simulating real green software development environment. Using GC-1 and GC-2 dataset, proposed model is about 60.05% more significant than other models.


2019 ◽  
Vol 4 (2) ◽  
pp. 176-183
Author(s):  
Ponco Wali

Testing repeat electronic scales with non-automatic scales technical requirements so far is fairly long if not using a calculator or computer. The aim of this research is to compare the repeatability testing method of electronic scales using methods according to the technical requirements of non-automatic scales and the Australian NMI method, both of which refer to OIML R76 in determining the validity or cancellation of electronic scales repeatability testing. This research method is done through repeat testing on 3 samples of electronic scales, then on each electronic scale 2 test methods are performed. The conclusion is that the electronic scales repeatability testing uses the non-automatic scales technical requirements method and the Australian NMI method has some differences although both refer to OIML R76. These differences include several points, namely the charge used, the method of adding additions, the formula for determining electronic scales, and different test results. The Australian NMI method is deemed to make it easier and more time efficient compared to the non-automatic weighing technical requirements method.


2021 ◽  
pp. 1-11
Author(s):  
Liu Narengerile ◽  
Li Di ◽  

At present, the college English testing system has become an indispensable system in many universities. However, the English test system is not highly humanized due to problems such as unreasonable framework structure. This paper combines data mining technology to build a college English test framework. The college English test system software based on data mining mainly realizes the computer program to automatically generate test papers, set the test time to automatically judge the test takers’ test results, and give out results on the spot. The test takers log in to complete the test through the test system software. The examination system software solves the functions of printing test papers, arranging invigilation classrooms, invigilating teachers, invigilating process, collecting test papers, scoring and analyzing test papers in traditional examinations. Finally, this paper analyzes the performance of this paper through experimental research. The research results show that the system constructed in this paper has certain practical effects.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 680
Author(s):  
Huaguo Liang ◽  
Jinlei Wan ◽  
Tai Song ◽  
Wangchao Hou

With the growing complexity of integrated circuits (ICs), more and more test items are required in testing. However, the large number of invalid items (which narrowly pass the test) continues to increase the test time and, consequently, test costs. Aiming to address the problems of long test time and reduced test item efficiency, this paper presents a method which combines a fast correlation-based filter (FCBF) and a weighted naive Bayesian model which can identify the most effective items and make accurate quality predictions. Experimental results demonstrate that the proposed method reduces test time by around 2.59% and leads to fewer test escapes compared with the recently adopted test methods. The study shows that the proposed method can effectively reduce the test cost without jeopardizing test quality excessively.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 670
Author(s):  
Preeda Chaturabong

Chip seal bleeding is influenced by many factors, including design inputs, material properties, and project-specific conditions. It reduces the surface texture of the pavement and thus compromises the safety of the traveling public. Even though factors that bring about premature bleeding are known, currently, no laboratory test methods for evaluating bleeding in chip seals have been specified. The objective of this paper is to present the results of an investigation of the influence factors of asphalt emulsion residue properties measured by the ASTM D7405 multiple stress creep and recovery (MSCR) test, as well as other factors related to chip seal bleeding resistance as measured by the modified loaded wheel test (MLWT). In this study, the MSCR test was used as a tool for evaluating the performance of asphalt emulsions because it has been identified as a potential test related to bleeding in the field. In addition, MLWT was selected as a tool for evaluating chip seal bleeding performance in the laboratory. The results of the MLWT showed that the emulsion application rate (EAR), aggregate gradation, and emulsion properties were significant factors affecting bleeding. The MSCR test was found to be a promising tool for the performance evaluation of asphalt emulsion residue, as the test was able to differentiate between emulsion chemistries and modifications in terms of sensitivity to both temperature and stress. In relation to chip seal bleeding resistance, only the creep compliance (Jnr) obtained from the MSCR test results was identified as a significant property affecting potential for bleeding.


2013 ◽  
Vol 345 ◽  
pp. 64-67
Author(s):  
Jian Hua Zhao ◽  
Rui Bo Zhang ◽  
De Bin Zhu ◽  
Hong Bin Gao

Shock test of marine diesel engine is the important content for ship anti-shock research. Plentiful shock tests of equipments have been carried out abroad, but there is no detailed test methods of diesel engine. According to simulation results, 8-channel acceleration test points are determined. Because diesel engine is working, the measured shock acceleration is interfered by vibration signal. Orthogonal wavelet decomposition and wavelet noise reduction methods are used to separate shock component from test results. The seperated shock component consists of two parts. One is the low-frequency part caused by the shock from diesel foundation and then attenuation through the isolator, the other is the high-frequency part caused by the secondary shock of the retainer.


2015 ◽  
Vol 830-831 ◽  
pp. 191-194
Author(s):  
M. Venkateswara Rao

Conventional tensile test methods are used for service exposed high temperature boiler tubes to evaluate the deterioration in mechanical properties such as tensile strength, yield strength and percentage elongation. The mechanical properties are required to be evaluated periodically as the boiler components undergo material degradation due to aging phenomena. The aging phenomena occurs due to continuous exposure of tubes to high temperature & pressure steam prevailing inside the tubes and high temperature exposure to corrosive combustible gases from the external surfaces within the boiler.A recent developed new technique called small punch testing has been used to evaluate the tensile properties of SA 213T22 grade steel predominantly exists in super-heater and re-heater sections of boiler. The small punch tests have been carried out on the miniature disk shaped specimens of diameter of 8.0 mm and 0.5 mm thickness extracted from both the new and service exposed tubes. Conventional uniaxial tensile tests on standard specimens from the same tube material have also been performed for comparison. The service exposed tubes showed considerable loss in mechanical properties in both the conventional and small punch test results. Correlations of tensile properties have been obtained based on the comparative analysis of both small punch and uniaxial tensile test results. Further, the study showed that an appropriate empirical relation could be generated for new and service exposed materials between both the techniques. Conventional test methods require large quantity of material removal for test samples from in-service components whereas small punch test method needs only a miniature sample extraction. This small punch test technique could also be extended to evaluate the thicker section boiler components such as pipelines and headers in the boiler as a part of remaining life assessment study. Also this technique could be a useful tool to any metallic component where large quantity of sample removal may be difficult or may not be feasible.


Sign in / Sign up

Export Citation Format

Share Document