Preparation and Characterization of Magnesium Borate Whisker

2013 ◽  
Vol 662 ◽  
pp. 481-484
Author(s):  
Zhi Liang Jin ◽  
Xu Jing ◽  
Yuan Hong ◽  
Xue Ying Nai ◽  
Li Wu

Being a new whisker products with high performance to price ratio, magnesium borate whiskers with a length of 10 - 50μm and a diameter of 0.5 - 2μm were prepared by molten salt and characterized by XRD, FT - IR, SEM and chemical titration. The experiments show that the synthesis conditions are as follows: raw materials ratio: Mg:B:flux =1:11.05:1-3.5(mol); reaction temperature: 800 - 950°C;reaction time:6 - 10hours; flux: NaCl、KCl or NaOH.

2011 ◽  
Vol 66-68 ◽  
pp. 65-69
Author(s):  
Long Feng Li ◽  
Yuan Gao ◽  
Mao Lin Zhang

Ca-Mg-Al hydrotalcite-like compounds (CaMgAl-HTLcs) were synthesized by a hydrothermal method, and characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and differential thermal analysis (DTA) techniques. The effects of the medium pH value, the molar ratio of the raw materials, the reaction temperature and the reaction time on the structure of CaMgAl-HTLcs were studied. The results showed that increasing treatment temperature and reaction time could improve the crystallinity and monodispersity of hydrotalcite-like compound particles. And well-defined CaMgAl-HTLcs could be prepared at a pH value of 10~11 with n(Zn+Mg+Ca):n(Al) =2. The products synthesized were applied to PVC to improve the thermal stability of PVC.


2014 ◽  
Vol 887-888 ◽  
pp. 551-556 ◽  
Author(s):  
Wei Jian Nong ◽  
Xiao Peng Chen ◽  
Jie Zhen Liang ◽  
Lin Lin Wang ◽  
Zhang Fa Tong ◽  
...  

Abietic acid was isolated by means of isomerization and amination reaction-crystallization coupled with ultrasonic wave. Isomerization rosin and ethanolamine were used as raw materials, 95% ethanol as recrystallization solvent, the effects of reaction temperature, reaction time, agitating velocity, ultrasound intensity and recrystallization times on the purity and yield of abietic acid were investigated. The suitable isolation conditions were obtained as follow: reaction temperature 30 °C, reaction time 40 min, agitating velocity 400 rpm, ultrasound intensity 300 W and freeze crystallization of amine salt three times. The purity and yield of abietic acid were 98.52% and 54.93% when the suitable conditions were used. And it was then characterization by its melting point, specific rotation, UV, FTIR and NMR, all evidence indicated that the purification product was abietic acid.


2011 ◽  
Vol 287-290 ◽  
pp. 569-572 ◽  
Author(s):  
Mao Lin Zhang ◽  
Yuan Gao ◽  
Long Feng Li

Ca-Mg-Al hydrotalcite-like compounds (CaMgAl-HTLcs) were synthesized by a hydrothermal method, and characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and differential thermal analysis (DTA) techniques. The effects of the medium pH value, the molar ratio of the raw materials, the reaction temperature and the reaction time on the structure of CaMgAl-HTLcs were studied. The results showed that increasing treatment temperature and reaction time could improve the crystallinity and monodispersity of hydrotalcite-like compound particles. And well-defined CaMgAl-HTLcs could be prepared at a pH value of 10~11 with n (Mg+Ca): n (Al) = 1~3 and n (Mg): n (Ca) = 1~3.


2013 ◽  
Vol 669 ◽  
pp. 124-130 ◽  
Author(s):  
Xian Mei Xie ◽  
Lian Duan ◽  
Xing Yu Cui ◽  
Jian Ming Zhang ◽  
Jie Xing

Hydrothermal synthesis of Cu-saponite was achieved using copper nitrate and sodium silicate as the raw materials. The mixtures of starting materials were treated under hydrothermal conditions at 60–230°C for 6–48h. The effect of different synthetic parameters such as hydrothermal temperature and hydrothermal time on the structure development of Cu-saponite was discussed. All the samples were characterized by X-ray diffraction (XRD), FT-IR, scanning electron microscopy (SEM) and nitrogen physisorption techniques. The results of the study showed that the obtained Cu-saponite exhibited better crystallinity at 200°C for 36h. Both increasing hydrothermal temperature and the duration of hydrothermal treatment yielded better crystallized Cu-saponite as determined by XRD. SEM micrographs revealed plate-like shape of the synthetic Cu-saponite. The results of nitrogen physisorption measurements showed different synthesis conditions resulted in different adsorption-desorption isotherms.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
José Luis P. Calle ◽  
Marta Ferreiro-González ◽  
Ana Ruiz-Rodríguez ◽  
Gerardo F. Barbero ◽  
José Á. Álvarez ◽  
...  

Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin (PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements as established by its PDO, which, in this case, means that it has been produced following the traditional solera and criadera ageing system. The quality of the vinegar is determined by many factors such as the raw material, the acetification process or the aging system. For this reason, mainly producers, but also consumers, would benefit from the employment of effective analytical tools that allow precisely determining the origin and quality of vinegar. In the present study, a total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR) spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other nonparametric supervised techniques, namely, support vector machine (SVM) and random forest (RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend of the vinegar samples according to their raw materials. SVM in combination with leave-one-out cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine used for their production. The RF method allowed selecting the most important variables to develop the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine. Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Bin Ji ◽  
Fang Dong ◽  
Miao Yu ◽  
Long Qin ◽  
Dan Liu

The response surface methodology was employed to optimize the synthesis conditions of seleno-Sargassum fusiforme(Harv.) Setch. polysaccharide. Three independent variables (reaction time, reaction temperature, and ratio of Na2SeO3to SFPSI) were tested. Furthermore, the characterization and antioxidant activity of Se-SFPSIin vivowere investigated. The result showed that the actual experimental Se content of Se-SFPSI was 3.352 mg/g at the optimum reaction conditions of reaction time 8 h, reaction temperature 71°C, and ratio of Na2SeO3to SFPSIB 1.0 g/g. A series of experiments showed that the characterization of Se-SFPSIB was significantly different from that of SFPSIB. Additionally, antioxidant activity assay indicated that the Se-SFPSIB could increase catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity of mice bearing tumor S180in blood, heart, and liver while decreasing malondialdehyde (MDA) levels. It can be concluded that selenylation is a feasible approach to obtain seleno-polysaccharide which was utilized as highly biological medicine or functional food.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Eleonora Sočo ◽  
Dorota Papciak ◽  
Magdalena M. Michel ◽  
Dariusz Pająk ◽  
Andżelika Domoń ◽  
...  

(1) Hydroxyapatite (Hap), which can be obtained by several methods, is known to be a good adsorbent. Coal fly ash (CFA) is a commonly reused byproduct also used in environmental applications as an adsorbent. We sought to answer the following question: Can CFA be included in the method of Hap wet synthesis to produce a composite capable of adsorbing both heavy metals and dyes? (2) High calcium lignite CFA from the thermal power plant in Bełchatów (Poland) was used as the base to prepare CFA–Hap composites. Four types designated CFA–Hap1–4 were synthesized via the wet method of in situ precipitation. The synthesis conditions differed in terms of the calcium reactants used, pH, and temperature. We also investigated the equilibrium adsorption of Cu(II) and rhodamine B (RB) on CFA–Hap1–4. The data were fitted using the Langmuir, Freundlich, and Redlich–Peterson models and validated using R2 and χ2/DoF. Surface changes in CFA–Hap2 following Cu(II) and RB adsorption were assessed using SEM, SE, and FT-IR analysis. (3) The obtained composites contained hydroxyapatite (Ca/P 1.67) and aluminosilicates. The mode of Cu(II) and RB adsorption could be explained by the Redlich–Peterson model. The CFA–Hap2 obtained using CFA, Ca(NO3)2, and (NH4)2HPO4 at RT and pH 11 exhibited the highest maximal adsorption capacity: 73.6 mg Cu/g and 87.0 mg RB/g. (4) The clear advantage of chemisorption over physisorption was indicated by the Cu(II)–CFA–Hap system. The RB molecules present in the form of uncharged lactone were favorably adsorbed even on strongly deprotonated CFA–Hap surfaces.


MRS Advances ◽  
2018 ◽  
Vol 4 (07) ◽  
pp. 377-384 ◽  
Author(s):  
DaNan Yea ◽  
SeonHui Jo ◽  
JongChoo Lim

ABSTRACTIn this study, 3 types of zwitterionic phospholipid biosurfactants LDP(S), CDP(S) and CTDP(S) were prepared from 3 different raw materials such as rapeseed oil, coconut oil and cottonseed oil respectively. The structure of the resulting phospholipid biosurfactants was elucidated by FT-IR, 1H NMR and 13C NMR spectroscopies and their interfacial properties have been examined such as CMC, static surface tension, wetting property, solution stability, and foam property. Interfacial property measurement and prescription test in cosmetic formulation prepared with the newly synthesized biosurfactants revealed that CDP(S) biosurfactant possesses excellent mildness and superior interfacial properties, indicating the potential applicability in cosmetic product formulations.


NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350042 ◽  
Author(s):  
JING WANG ◽  
LI GUO ◽  
LI FANG MA

In this paper, we firstly synthesized glycyrrhetinic acid-modified double amino-terminated poloxamer 188 (GA–NH–POLO–NH–GA). The structure of the synthesized compound was confirmed by 1H-NMR and Fourier transform infrared (FT-IR) spectroscopy. Then the nanoparticles composed of GA–NH–POLO–NH–GA/chitosan (GA–NH–POLO–NH–GA/CTS) were prepared by an ionic gelation process. The characterization of the nanoparticles was measured by dynamic light scattering (DLS) and scanning electron microscope (SEM). The results showed that the nanoparticles were well dispersed with a spherical shape and the particle size was distributed between 100 nm and 300 nm. The cytotoxicity based on MTT assay against cells (QGY-7703 cells and L929 cells) showed that the nanoparticles had low toxicity and good biocompatibility. The encapsulation efficiency and drug loading of 5-fluorouracil-loaded nanoparticles (5-FU nanoparticles) were measured by high-performance liquid chromatography (HPLC) and fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorbance. The encapsulation of 5-Fu-loaded CTS nanoparticles was 12.8% and the drug loading was 2.9%, while the encapsulation of 5-Fu-loaded GA–NH–POLO–NH–GA/CTS nanoparticles was 20.9% and the drug loading was 3.36%. The release profile showed that the GA–NH–POLO–NH–GA/CTS nanoparticles were available for sustained release of 5-Fu. The GA–NH–POLO–NH–GA/CTS nanoparticles have a higher affinity to the QGY-7703 cells, so indicated that the GA–NH–POLO–NH–GA/CTS nanoparticles have the capacity of liver-targeting in vitro.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2555 ◽  
Author(s):  
Jie Liu ◽  
Jianghao Liu ◽  
Yuan Zeng ◽  
Haijun Zhang ◽  
Zhi Li

A molten-salt and microwave co-facilitated boro/carbothermal reduction methodology was developed for low temperature high-efficiency synthesis of TiB2 powders. By using relatively inexpensive titanium oxide (TiO2), boron carbide (B4C) and amorphous carbon (C) as raw materials, single-phase TiB2 powders were prepared after 60 min at as low as 1150 °C or after only 20 min at 1200 °C. Such synthesis conditions were remarkably milder than those required by the conventional reduction routes using the identical reducing agent. As-synthesized TiB2 powders exhibited single-crystalline nature and well-grown hexagonal-platelet-like morphology. The achievement of low temperature high-efficiency preparation of high-quality TiB2 microplatelets in the present work was mainly attributable to the synergistic effects of molten-salt medium and microwave heating.


Sign in / Sign up

Export Citation Format

Share Document