scholarly journals Characterization of CdS Nanoparticles Synthesized Using Microwave-Assisted Polyol Method

2013 ◽  
Vol 667 ◽  
pp. 122-127 ◽  
Author(s):  
Nayereh Soltani ◽  
Elias Saion ◽  
Mohd Zobir Hussein ◽  
Robiah Bt. Yunus ◽  
Manizheh Navaseri

Synthesis of cadmium sulfide (CdS) nanoparticles has been performed through the simple and rapid microwave-assisted polyol method, using cadmium chloride and thioacetamide as the cadmium and sulfur sources respectively. Attempts were made to control the size and crystallinity of the CdS nanoparticles by controlling microwave irradiation time and the initial molar ratio of the cadmium and sulfur sources. The structure of nanoparticles characterized by X-ray diffraction (XRD) was hexagonal. No peaks corresponding to impurities were detected, indicating the high purity of the product. The size of the prepared samples was calculated by Debye–Scherrer formula according to XRD spectra. The morphology of particles was observed in the transmission electron microscopy (TEM) images was spherical. The average size of nanoparticles was also estimated from these images. The optical absorption of CdS nanoparticles studied by UV-Visible spectroscopy showed a blue shift from bulk CdS due to quantum confinement. The size of nanoparticles was calculated by Brus formula according to UV-Visible spectrum and compared to XRD and TEM results.

2020 ◽  
Vol 10 ◽  
Author(s):  
Manish Dwivedi ◽  
Vijay Tripathi ◽  
Dhruv Kumar ◽  
Dwijendra K. Gupta

Aims: CdS nanoparticles are an attractive material having application in various field like as pigment in paints, biotag for bioimaging and many more optoelectronic as well as biological applications. Present study aims to synthesize and characterize the CdS nanoparticles to make it applicable in different areas Objectives: Preparation CdS nanoparticles by using simple and facile chemical methods and further physical and structural characterization using various physical tools Methods: In present work CdS nanoparticles has been synthesized by using rationally simple chemical precipitation method with some modi-fication on temperature and incubation time in existed methods. Characterizations were done by employing XRD, SEM, TEM, AFM tech-niques Results: Simple chemical method produces the CdS nanoparticles with the size about 100-200 nm in length and 5-10 nm in diameter. The SEM studies show that the CdS nanoparticles can agglomerate and form a continuous network like structure. The X-ray diffraction (XRD) measurements show the single-phase formation of CdS nanoparticles with the structure of cubic phase, and the broadening of XRD patterns indicates that the prepared samples are nanostructured. Our analysis on CdS nanoparticles by using transmission electron microscope and atomic force microscope (AFM) revealed that the nanoparticles form both spherical and nearly rod shaped with the average size applicable for biotagging. UV-Vis spectroscopic analysis reveals blue shift in the absorption peak probably caused by quantum confinement Conclusion: The observed CdS nanoparticles were appeared yellow in color. The XRD pattern of the CdS nanoparticles showed that the materials were of nanometric sized regime with a predominantly cubic phase along with the rod and round morphology. The study and char-acterization of CdS nanoparticles will bring us a new approach to understand biological problem by tagging nanoparticles with biomolecules and further suggests that the CdS nanoparticles formulate it more suitable biocompatible nanomaterial for biotagging and bioimaging


2019 ◽  
Vol 52 (2) ◽  
pp. 159-166 ◽  
Author(s):  
MA Ramazanov ◽  
FV Hajiyeva ◽  
YA Babayev ◽  
GV Valadova ◽  
SG Nuriyeva ◽  
...  

Poly(vinyl chloride) (PVC)–cadmium sulfide (CdS) nanocomposite films were successfully synthesized by ex situ solution casting method. Scanning electron microscopy showed that CdS nanoparticles are well monodispersed in the PVC matrix. From the ultraviolet (UV) spectra of nanocomposites, the width of the forbidden band for polymer nanocomposites was determined by extrapolation method. UV-visible optical spectra revealed that the optical band of nanocomposites is increased with increasing concentration of CdS nanoparticles in the PVC matrix. It was found that the band gap is 3.8 eV for PVC-3% CdS nanocomposites, 2.7 eV for PVC-5% CdS, and 2.35 eV for PVC-10% CdS nanocomposites. Photoluminescence spectrum of PVC-CdS-based nanocomposites shows two luminescent peaks at the wavelengths of 436 nm and 472 nm at the luminescence spectrum which belongs to CdS nanoparticles. Photoluminescence study shows that PVC-CdS nanocomposites exhibit a great blue shift (approximately 100 nm) compared with bulk CdS nanoparticles.


MRS Advances ◽  
2020 ◽  
pp. 1-13
Author(s):  
G. Killivalavan ◽  
B. Sathyaseelan ◽  
G. Kavitha ◽  
I. Baskarann ◽  
K. Senthilnathan ◽  
...  

Abstract The REE (rare-earth-elements) cerium (Ce) is the most abundant earth-crust element and their oxides have great attention in the form of nanocrystalline nature with superior physical and chemical properties. Pure and Co (1%, 3% and 5%) doped CeO2 nanoparticles (NPs) synthesized by co-precipitation technique were characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy. XRD shows face-centred-cubic (FCC) crystal symmetry with average crystallite size 6–12 nm. HRTEM exhibits almost identical cubical shaped particles with average size 4–10 nm. Tuned band-gap may be observed from UV-visible spectrum of CeO2-NPs upon Co (1%, 3% & 5%) incorporation. Enhancement of the photocatalytic activity observed for Co-doped (1%, 3% & 5%) to the degradation of methylene-blue (MB) dye under visible-light absorption.


2016 ◽  
Vol 12 ◽  
pp. 74-78 ◽  
Author(s):  
Tanvi Sharma ◽  
Harpreet Kaur ◽  
Amandeep Kaur ◽  
Mandeep Singh ◽  
Navdeep Kaur ◽  
...  

Tunable properties of porous metal organic frameworks (MOFs) make them a potential candidate for sustained release of functionally active biomolecules. Current study describes in situ encapsulation of anti-cancer drug, docetaxel in iron based MOFs for drug delivery applications. MOFs were synthesized using emulsification approach by mixing FeCl3.4H2Oand benzene tricarboxylate (BTC) in 1:1 molar ratio in the presence of cetyl trimethyl ammonium bromide (CTAB). Optical characterization of the NMOFs was done using UV-visible and FTIR spectroscopy. The peak obtained at 265 nm in the UV-visible spectrum indicated the formation of iron-based NMOF. The peaks obtained at 3416, 1623 and 3343cm-1 corresponding to C=O, C=C and C=O groups in FTIR spectroscopy further supported our observations. Microencapsulation of docetaxel was achieved by mixing the drug with the iron salt during the synthesis of MOF. Drug encapsulation was affirmed by Transmission Electron Microscopy. Current study is an attempt in exploring the microencapsulation properties of MOFs.


Author(s):  
P. Mariselvi ◽  
T. Anantha Kumar

Aims: In the present investigation, To synthesis, characterization and antibacterial activity of Calcareous/TiO2 nanocomposites toward Bacillus, Proteus vulgaris, Micrococcus luteus, Staphylococcus aureus and Escherichia coli. Methodology: The resulting Calcareous/TiO2 nanocomposite was synthesized by         hydrothermal method. The synthesized nanocomposites were characterized by using XRD,        SEM with EDAX, AFM, TEM and UV-Vis absorption spectroscopy. The antibacterial            activities of the Calcareous/TiO2 nanocomposite species were checked by using agar well diffusion method. Results: The XRD pattern is showed that the diffraction peaks appear in the pattern    corresponding to the anatase phase of TiO2. UV-Visible spectrum showed that the blue shifted when compared with bulk TiO2 (3.2 eV). The blue shift might be caused by nanosize effect and structural defect of nanomaterials. AFM image shows the morphology of Calcareous/TiO2 nanocomposites forming sharp particles on the surface. TEM image showed that the particles exhibit a relatively uniform particle size distribution. The average size of the nanocomposites estimated from the TEM image is around 50nm. Conclusion: In conclusion, the Calcareous/TiO2 nanocomposites have been successfully synthesized. The prepared nanocomposites were characterized using various analytical tools like XRD, SEM with EDAX, AFM, TEM, UV-Vis absorption spectrum.


2021 ◽  
Vol 10 (4) ◽  
pp. 2646-2654

Green synthesis of silver nanoparticles (Ag NPs) was performed using flower extract of Hemigraphis colorata (H. Colorata). Synthesized nanoparticles were characterized by UV-Visible Spectrophotometer (UV-Vis), Fourier Transform Infrared (FT-IR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM-SAED). , The crystalline nature of the sample was examined by an X-ray diffraction study (XRD). The UV-Visible spectrum showed surface plasma resonance (SPR) at 360 nm revealed the formation of nanoparticles, SEM and TEM exhibited spherical shape particles with an average size between 10-20 nm. The valuation of the antibacterial and antifungal study revealed its efficiency in killing bacteria and fungi.


2004 ◽  
Vol 19 (9) ◽  
pp. 2567-2575 ◽  
Author(s):  
K. Madhusudan Reddy ◽  
Debanjan Guin ◽  
Sunkara V. Manorama ◽  
A. Ramachandra Reddy

By variation of reaction temperature and time during the hydrothermal synthesis process, TiO2 nanoparticles in anatase, rutile, and mixture of rutile-anatase phases are formed without adding any mineralizer. Differential thermal analysis studies indicate the rutile phase crystallization at a comparatively lower temperature and a low weight loss. The material synthesized by hydrothermal reaction required no post-calcination for the crystallization. Transmission electron microscopy, selected-area diffraction, Brunauer–Emmett–Teller, and x-ray diffreaction studies confirmed the compositions to be anatase and rutile with the particle size ranging from 5 to 25 nm with surface area as high as 260 m2/g for the anatase and 65 m2/g for rutile. The prepared nanoparticles exhibited a blue shift of the absorption edge in the ultraviolet-visible spectrum greater than 10 nm. The particles with average size around 5 nm showed two band edges in the absorption spectra attributed to two different particle sizes. Simple photocatalytic reactions were tried to demonstrate the photochemical activity of the synthesized material. The synthesized nanoparticles exhibited an ultraviolet radiation simultaneous photoreduction of Cr(VI) to Cr(III) and oxidation of formic acid into carbon dioxide and water.


Author(s):  
E. Albrasi ◽  
S. Almabrok ◽  
P. John. Thomas

In this work, the capped and uncapped copper oxide (CuO) nanoparticles film with an average size ranging from 8.7- 6.2 nm have been prepared by a chemical wet procedure using copper (II) sulfate with sodium hydroxide at 50 °C. The EDTA was used as a capping agent and the obtained samples were investigated by UV visible spectrum. The uncapped and EDTA capped CuO nanoparticles reveals two bands observed at 310 nm and 232 nm for uncapped and EDTA capped CuO nanoparticles respectively. The optical absorption spectra exhibits the energy band gap for uncapped and EDTA capped (CuO) in the range of (3.8 - 4.5) eV respectively.


2020 ◽  
Author(s):  
Riccardo Mobili ◽  
Sonia La Cognata ◽  
Francesca Merlo ◽  
Andrea Speltini ◽  
Massimo Boiocchi ◽  
...  

<div> <p>The extraction of the succinate dianion from a neutral aqueous solution into dichloromethane is obtained using a lipophilic cage-like dicopper(II) complex as the extractant. The quantitative extraction exploits the high affinity of the succinate anion for the cavity of the azacryptate. The anion is effectively transferred from the aqueous phase, buffered at pH 7 with HEPES, into dichloromethane. A 1:1 extractant:anion adduct is obtained. Extraction can be easily monitored by following changes in the UV-visible spectrum of the dicopper complex in dichloromethane, and by measuring the residual concentration of succinate in the aqueous phase by HPLC−UV. Considering i) the relevance of polycarboxylates in biochemistry, as e.g. normal intermediates of the TCA cycle, ii) the relevance of dicarboxylates in the environmental field, as e.g. waste products of industrial processes, and iii) the recently discovered role of succinate and other dicarboxylates in pathophysiological processes including cancer, our results open new perspectives for research in all contexts where selective recognition, trapping and extraction of polycarboxylates is required. </p> </div>


Sign in / Sign up

Export Citation Format

Share Document