Experimental Study and Life Cycle Assessment of High Volume Fly Ash Concrete

2013 ◽  
Vol 671-674 ◽  
pp. 1796-1799
Author(s):  
Shi Qin He ◽  
He Li ◽  
Zhong Feng Zhu ◽  
Peng Fei Li

One of the effective ways of low carbon concrete is to reduce the cement content. It can not only reduce the greenhouse gas emission, but also improve the comprehensive utilization of industrial solid waste. In this paper, the mix design and experimental research of C15 Self-Compacting Concrete (SCC) were carried out by substituting cement with high volume fly ash. A partition coefficient of environmental burden Cm was introduced in order to assess the environmental effect of different mix proportion SCC precisely by using life cycle assessment method. Evaluation results showed that the mixing of fly ash can reduce the consumption of coal, the discharge of CO2 and the solid wastes effectively. The study provided a rational basis for the high performance and low cost fly ash concrete.

2006 ◽  
Vol 302-303 ◽  
pp. 26-34
Author(s):  
Feng Xing ◽  
Xiang Yong Guo ◽  
Fa Guang Leng ◽  
Ren Yu Zhang

In this paper, the main characteristic of definition, property, requirement of raw material, mix proportion design and performance improvement of high volume fly ash concrete (for short HVFAC) are summarized. The applications of HVFAC in dam, highway, building and port are introduced. The research results have shown that HVFAC have outstanding properties of physical mechanics, but some problems need to be further studied. It is believed that an operable strict corresponding technical criterion would be set down as soon as possible for engineering practice.


2013 ◽  
Vol 339 ◽  
pp. 638-641 ◽  
Author(s):  
Ling Mei Zhang

With the acceleration of economic development, high-performance concrete applied more widespread due to its own merit. A certain amount of mineral admixture important role in the performance of high-performance concrete. This paper studies the high ash (30% -50%) of fly ash concrete compressive strength, splitting tensile strength, static elastic modulus and other mechanical properties.


2006 ◽  
Vol 302-303 ◽  
pp. 470-478 ◽  
Author(s):  
Jian Hua Wu ◽  
Xin Cheng Pu ◽  
Fang Liu ◽  
Chong Wang

The emphasis of this paper is how to increase the 3-day and 28-day strength of high volume fly ash concrete. By some technical measures, such as improving the initial pozzolanic activity (3 day) of fly ash and decreasing the ratio of water to binding material and increasing the total dosage of binding materials, a concrete with the ratio of fly ash to binding materials between 50 %-70 % can be made. The fluidity of the concrete mix with large dosage of fly ash is very good and the strength at 3 day and 28 day are more than 42.5 MPa and 85 MPa respectively. By determining the pH value and the calcium hydrate content of the paste with large dosage of fly ash and accelerated carbonation test, it is shown that the resistance of the concrete to carbonization has been improved. The concrete with large dosage fly ash has good volume stability.


2019 ◽  
Vol 8 (3) ◽  
pp. 5990-5994 ◽  

In the present study, high strength high volume fly ash concrete of M70 grade is developed and its durability properties such as water absorption capacity, porosity, and sorptivityare ascertained. It was found that high volume fly ash does not yield high strength so silica fume is added for early strength gain and for later strength gain lime required for complete pozzolonic action is added to achieve high performance concrete. In this study after testing for various combinations of quaternary blended concrete it was reported that 30% cement +70% fly ash as total powder achieves high strength of nearly 70 MPa, when silica fume of 10% by weight of powder and 30% of lime by weight of powder are added to the total powder content. The high strength high volume concrete developed with this optimum quantities of quaternary blends will be evaluated for the performance.It was found that water absorbtion in high strength high volume fly ash concrete reduced by nearly 85% and porosity is reduced by 34%.


2021 ◽  
pp. 103168
Author(s):  
Charith Herath ◽  
Chamila Gunasekara ◽  
David W. Law ◽  
Sujeeva Setunge

Sign in / Sign up

Export Citation Format

Share Document