Stability Analysis on a Crack Rotor System in the Special Speeds

2013 ◽  
Vol 675 ◽  
pp. 116-120 ◽  
Author(s):  
Feng Lan Wang

In this paper, the single disk rotor system with a transverse open and close crack has been taken as an example; the stability problem on the system in the special speeds has been discussed by theoretical analysis and experimental study. First, the conditions, positions and areas of the stable vibrations and the unstable vibrations on a rotor system with a transverse crack have been studied quantitatively theoretically. Not only the conclusions of other authors are verified,but also that the unstable vibrations are found in the regions near the rotational speed at 2/5and 2/7 of the critical speed in the large crack and the small damping case. Then the influence of some factors such as the crack depth parameters and the damping on stability of the system is qualitatively discussed.

2013 ◽  
Vol 328 ◽  
pp. 651-656 ◽  
Author(s):  
Feng Lan Wang

In this paper, the single disk rotor system with a transverse open and close crack has been taken as an example; square wave function has been adopted to express opening and closing characteristics of a transverse crack. The stability on the system has been discussed by theoretical analysis and experimental model study. The conclusions have shown that the unstable vibrations are found in the regions near the rotational speed at 2/3, 2/5and 2/7 of the critical speed in the large crack and the small damping case. The influence of some factors such as the crack depth and the damping on stability of the system is qualitatively discussed.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Jean-Jacques Sinou

In this paper, the nonlinear response of a rotor system containing a transverse crack is analyzed experimentally in order to propose a nondestructive detection of cracks in the rotor. More particularly, the evolutions of the n× superharmonic frequency components at the various subcritical resonant peaks and the decrease in the subcritical resonant speeds are investigated for various crack depths. The experimental results that are presented in this study confirm the theoretical analysis of many researchers and provide a possible basis for an on-line monitoring system.


Engineering ◽  
2011 ◽  
Vol 03 (07) ◽  
pp. 719-725 ◽  
Author(s):  
Costin D. Untaroiu ◽  
Alexandrina Untaroiu ◽  
Mihail Boiangiu

2010 ◽  
Vol 148-149 ◽  
pp. 141-146
Author(s):  
Di Hei ◽  
Yong Fang Zhang ◽  
Mei Ru Zheng ◽  
Liang Jia ◽  
Yan Jun Lu

Dynamic model and equation of a nonlinear flexible rotor-bearing system are established based on rotor dynamics. A local iteration method consisting of improved Wilson-θ method, predictor-corrector mechanism and Newton-Raphson method is proposed to calculate nonlinear dynamic responses. By the proposed method, the iterations are only executed on nonlinear degrees of freedom. The proposed method has higher efficiency than Runge-Kutta method, so the proposed method improves calculation efficiency and saves computing cost greatly. Taking the system parameter ‘s’ of flexible rotor as the control parameter, nonlinear dynamic responses of rotor system are obtained by the proposed method. The stability and bifurcation type of periodic responses are determined by Floquet theory and a Poincaré map. The numerical results reveal periodic, quasi-periodic, period-5, jump solutions of rich and complex nonlinear behaviors of the system.


1996 ◽  
Vol 33 (5) ◽  
pp. 798-808 ◽  
Author(s):  
Jiin-Song Tsai ◽  
Jia-Chyi Chang

On the basis of the limiting equilibrium and arching theory, a three-dimensional analysis is proposed for slurry-supported trenches in cohesionless soils. This analytical approach is developed by considering the trench stability problem as a vertical soil cut within a fictitious half-silo with a rough wall surronding. Arching effects are considered not only in the vertical direction but also in the horizontal direction. A shell-shaped slip surface of the sliding soil mass is defined by Mohr-Coulomb criterion. The factor of safety is defines as the ratio of the resisting force induced by slurry pressure to the horizontal force required to maintain the stability of the trench wall. Results of the proposed method have been compared with those of two existing analytical methods for a typical trench stability problem. Key words: stability analysis, slurry trench wall, cohesionless soil.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Dapeng Tian ◽  
Bao Zhang ◽  
Honghai Shen ◽  
Jiaquan Li

The wave variable has been proposed to achieve robust stability against the time delay in bilateral control system. However, the influence of the force source on the overall system is still not clear. This paper analyzes this problem and proposes a supplement to the stability analysis for wave variable based bilateral control. Based on the scattering theory, it is pointed out that the design of force source decides the passivity of the two-port network of slave robot. This passivity influences the stability of overall system. Based on the characteristic equation and small gain theorem, it is clear that inappropriate designed force source in encoding the wave variable destroys the stability in the presence of time delay. A wave domain filter makes up for the broken stability. The principle of this reparation is explained in this paper. A reference is also provided by the analysis to design the parameter of the wave domain filter. Experiments prove the correctness and validity.


Author(s):  
Jörg Wauer ◽  
Jürgen Heilig

Abstract The dynamics of a nonlinear car disc brake model is investigated and compared with a simplified linear model. The rotating brake disc is approximated by a rotating ring. The brake pad is modeled as a point mass which is in contact with the rotating ring and visco-elastically suspended in axial and circumferential direction. The stability analysis for the nonlinear model is performed by a numerical evaluation of the top Lyapunov-exponent. Several parameter studies for the nonlinear model are discussed. It is shown that dynamic instabilities of the nonlinear model are estimated at subcritical rotating speeds lower than 10% of the critical speed. Further, the sensitivity of the nonlinear model to the initial conditions and the stiffness ratios is demonstrated.


1992 ◽  
Vol 114 (1) ◽  
pp. 126-130 ◽  
Author(s):  
S. Nagarajan ◽  
D. A. Turcic

In this work critical speed ranges are determined and verified for an elastic four bar crank rocker mechanism where all links are modeled as elastic members. The procedure used for the dynamic stability analysis is described in Nagarajan and Turcic (1991). The speed range of interest where the stability analysis is performed is 195–390 rpm. The values of the critical speeds obtained in the above speed range are then verified using independent theoretical and experimental methods of analysis. The steady state strain response is obtained both theoretically and experimentally for a number of speeds in the speed range of 195–390 rpm. From these responses plots different strain characteristics versus operating speeds are obtained. These plots exhibit peaks in the response at certain speeds indicating that the dynamic response at these speeds reaches a local maximum value. The critical speed ranges determined are found to correspond quite closely to the speeds where the peaks occur. This indicates that the critical speed ranges are indeed speeds where the response of the system is larger when compared to neighboring speeds and that the methods of determining them are accurate for the application considered.


1974 ◽  
Vol 66 (4) ◽  
pp. 725-737 ◽  
Author(s):  
E. M. Withjack ◽  
C. F. Chen

The stability of Couette flow of stratified salt solutions is investigated in an apparatus with both the inner and outer cylinders rotating. The ratio of the radius of the inner cylinder to that of the outer cylinder is 0·2. The flow is visualized by means of shadowgraph and dye-trace methods. Compared with homogeneous fluids, the effect of the stabilizing density gradient is to increase the critical speed of the inner cylinder and to decrease the critical wavelength for a given angular speed of the outer cylinder. When the cylinders are rotating in the same direction, in the critical state, the instabilities appear along the inner cylinder in a spiral wave form which is itself not very stable. With counterrotating cylinders, the instabilities appear as regularly spaced vortices which, for the most part, are neither symmetric Taylor vortices nor simple spirals. In addition, these vortices rotate as a whole at a speed generally smaller than that of the inner cylinder. From shadowgraph observations, stability curves are constructed for three density gradients. The critical wavelength and the rotational periods of the vortices are also determined.


1989 ◽  
Vol 111 (3) ◽  
pp. 351-353
Author(s):  
Wen Zhang

The paper is devoted to the estimation of the lower bound of the stability threshold speed (STS) of a flexible rotor system supported in fluid-film bearings. It is proved theoretically that the STS of any multi-degree-of-freedom flexible rotor system is always higher than the STS of the corresponding equivalent single disk rotor. The conclusion offers us a simple approach to estimate the STS of any actual rotor system and provides a theoretical foundation for the approach.


Sign in / Sign up

Export Citation Format

Share Document