scholarly journals Properties of Nanostructure Bismuth Telluride Thin Films Using Thermal Evaporation

2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Swati Arora ◽  
Vivek Jaimini ◽  
Subodh Srivastava ◽  
Y. K. Vijay

Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te) and bismuth (Bi) were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to show granular growth.

2012 ◽  
Vol 535-537 ◽  
pp. 481-485 ◽  
Author(s):  
Mang Jiang ◽  
Jun Hong Duan ◽  
Zhiang Liu

The authors present the results of hetero-epitaxial growth of ultrafine SnO2nanowires on ZnS nanobelt substrates by a simple thermal evaporation method. ZnS/SnO2hetero-nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), transmission electron microscopy (TEM) to obtain the morphology and structural information. Comparing with ZnS nanobelts and SnO2nanowires respectively, the optical properties of ZnS/SnO2hetero-nanostructures are studied by Raman scattering and photoluminescence (PL) spectroscopy at room temperature.


2021 ◽  
Vol 1039 ◽  
pp. 398-405
Author(s):  
Munira M.J. Al-Haji ◽  
Raad M.S. Al-Haddad

Bulk Germanium monosulphide (GeS) alloy was synthesized using the usual melt-quenching technique. Its grains were used as the source material to deposit thin films by vacuum thermal evaporation. Thin-films samples were doped with 1, 2, and 3 at.% indium by thermal co-evaporation and annealed in a vacuum at temperatures 373, 473 and 550 K for an hour. Compositional, structural, and morphological properties of the bulk GeS alloy and its thin films were investigated by Energy Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques. The analyses verified the stoichiometry (GeS) of the starting material in the prepared thin films. They also revealed that the thin films under study are amorphous, homogeneous, without any cracks deposited uniformly on the glass substrate with thickness 650 to 700 nm.


2019 ◽  
Vol 17 (41) ◽  
pp. 15-28
Author(s):  
Hussain. M. Selman

BixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measurements for the thin films of BixSb2-xTe3, show that the grain size and the average surface roughness decreases with increasing of the percentage Bi for different thickness.


2016 ◽  
Vol 697 ◽  
pp. 284-287
Author(s):  
Zhen Guang Shen ◽  
Zhi Jian Peng ◽  
Jing Wen Qian ◽  
Xiu Li Fu

WO3 particles with different grain sizes were prepared by a thermal evaporation method. The composition, morphology, and optical properties of the samples were analyzed by powder X-ray diffraction, scanning electron microscopy, and UV–vis absorption and photoluminescence spectroscopy. Their photocatalytic properties were evaluated by decomposing methylene blue in aqueous phase. It was found that the smaller the grain size of the prepared WO3 particles, the better the degradation effect on methylene blue.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Wei Chen

Thermoelectric (TE) materials are crucial because they can be used in power generation and cooling devices. Sb2Te3-based compounds are the most favorable TE materials because of their excellent figure of merit at room temperature. In this study, Sb2Te3thin films were prepared on SiO2/Si substrates through thermal evaporation. The influence of the evaporation current on the microstructures and TE properties of Sb2Te3thin films were investigated. The crystalline structures and morphologies of the thin films were analyzed using X-ray diffraction and field emission scanning electron microscopy. The Seebeck coefficient, electrical conductivity, and power factor (PF) were measured at room temperature. The experimental results showed that the Seebeck coefficient increased and conductivity decreased with increasing evaporation current. The Seebeck coefficient reached a maximum of 387.58 μV/K at an evaporation current of 80 A. Conversely, a PF of 3.57 µW/cmK2was obtained at room temperature with evaporation current of 60 A.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 118 ◽  
Author(s):  
Ho-Yun Lee ◽  
Chi-Wei He ◽  
Ying-Chieh Lee ◽  
Da-Chuan Wu

Cu–Mn–Dy resistive thin films were prepared on glass and Al2O3 substrates, which wasachieved by co-sputtering the Cu–Mn alloy and dysprosium targets. The effects of the addition ofdysprosium on the electrical properties and microstructures of annealed Cu–Mn alloy films wereinvestigated. The composition, microstructural and phase evolution of Cu–Mn–Dy films werecharacterized using field emission scanning electron microscopy, transmission electronmicroscopy and X-ray diffraction. All Cu–Mn–Dy films showed an amorphous structure when theannealing temperature was set at 300 °C. After the annealing temperature was increased to 350 °C,the MnO and Cu phases had a significant presence in the Cu–Mn films. However, no MnO phaseswere observed in Cu–Mn–Dy films at 350 °C. Even Cu–Mn–Dy films annealed at 450 °C showedno MnO phases. This is because Dy addition can suppress MnO formation. Cu–Mn alloy filmswith 40% dysprosium addition that were annealed at 300 °C exhibited a higher resistivity of ∼2100 μΩ·cm with a temperature coefficient of resistance of –85 ppm/°C.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Jiaxiang Chen ◽  
Xiaopeng Jia ◽  
Yuewen Zhang ◽  
Haiqiang Liu ◽  
Baomin Liu ◽  
...  

The polycrystalline skutterudite [Formula: see text] were successfully synthesized from 1.5 GPa to 3.5 GPa by the high pressure and high temperature (HPHT) method. Negative Seebeck coefficient confirmed the n-type conductivity of all samples. The phase compositions of samples were investigated by X-ray diffraction (XRD) and the microstructures were observed by scanning electron microscopy (SEM). It was found that the grains appeared smaller and the grain boundaries became more abundant when pressures were higher. We measured the electrical properties from room temperature to 723 K. Both the electrical resistivity and absolute value of Seebeck coefficient increase with the increasing synthetic pressure. At 723 K, the maximum power factor of [Formula: see text] was obtained for the sample synthesized under 3 GPa. The maximum ZT value of 0.61 was reached by [Formula: see text] synthesized under 3 GPa and measured at 723 K.


Sign in / Sign up

Export Citation Format

Share Document