Model and Simulation of Six-DOF Parallel Platform Based on Direct Drive Volume Control

2013 ◽  
Vol 684 ◽  
pp. 381-385
Author(s):  
Xiao Lin Dai ◽  
Huai Zheng

The fuel system experimental platform based on Stewart manipulator is used to test the performance and reliability of airplane’s fuel system. Synthesizing efficiency and safety, direct drive method is used as actuator of the experimental platform. Kinematic and dynamic model of the parallel manipulator platform is established. Servo motor and hydraulic cylinder of pump control are modeled for deducing the mathematical model of the experimental platform. Simulation results of the experimental platform show the platform of direct drive method can satisfy the requirements of operation. In addition, data from the simulation can be used as the basis for the design and optimization of the experimental platform for fuel system.

Author(s):  
Kazushi Sanada

A direct drive volume control (DDVC) is applied to fuel injection control for marine diesel engine. The DDVC consists of an AC servomotor, a fixed-displacement hydraulic pump, and a hydraulic cylinder. The hydraulic cylinder pushes a plunger pump and fuel is pressurized. When the fuel pressure becomes greater than injection pressure, fuel is injected to a combustion chamber. A brief introduction of the DDVC is described first in this paper referring to conventional fuel injection systems including a cam mechanism and a common rail system. A mathematical model of the DDVC for simulation is summarized. Experiments of fuel injection shows the control function of the DDVC fuel injection system. The topic of this paper is feedback control of the quantity of fuel injection (fuel mass per injection) of the DDVC. The feedback control system is simulated using the above mathematical model. Fuel injection is stopped by switching a drive signal of the AC servomotor and retracting a piston of the hydraulic cylinder. The timing to stop injection is adjusted based on crank angle. An algorithm of updating the crank angle to stop injection is proposed so that the quantity of fuel injection follows the target value. Simulation study shows that the update algorithm works successfully.


2013 ◽  
Vol 433-435 ◽  
pp. 991-994
Author(s):  
Zhu Xin Zhang ◽  
Tuo Jia

Direct-drive volume control electro-hydraulic servo control system, derivation model of single-rod hydraulic cylinder system, pointed out that when the reciprocating motion characteristics are inconsistent. In order to solve this problem, proposed direct-drive differential volume control electro-hydraulic servo system design of its control system and analysis of system models. Through theoretical analysis, validate this proposed direct-drive bad dynamic volume control system, symmetric dynamic performance, improving control system reliability.


Author(s):  
Yong Xue ◽  
JunHong Yang ◽  
JianZhong Shang ◽  
HuiXiang Xie

In order to improve the efficiency of multi-actuator mobile robots hydraulic system, this paper proposes a new kind of cylinder whose effective area is variable. The new cylinder has multi chambers which can be connected with each other or to a main system circuit by controlling switching valves. On the one hand, the new cylinder can make sure that the load pressure of all actuators is almost equal through varying effective area. On the other hand, the new cylinder can realize the flow recovery through that return chambers are connected with feeding chambers. Therefore, the new cylinder can reduce overall machine energy consumption by reducing throttling losses and allowing energy recovery. The performance of the new cylinder is analyzed through building the mathematical model. Based on the evaluated results, in order to further improve the performance of the load match of the cylinder and avoid the deflection of the main piston, the structure of the cylinder is optimized. Finally, an optimized cylinder is shown in this paper which has well performance of the load match.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


2009 ◽  
Vol 147-149 ◽  
pp. 1-6 ◽  
Author(s):  
Rafal Osypiuk ◽  
Torsten Kröger

This contribution presents a new force control concept for industrial six-degree of freedom (DOF) manipulators, which uses a Hexa platform that provides an active environmental stiffness for all six DOFs. The paper focuses on the Hexa platform and is split into two essential parts: (i) parallel platform construction, and (ii) application of force control with industrial manipulators using a six-DOF environmental stiffness. This mechatronic solution almost gives one hundred percent robustness for stiffness changes in the environment, what guaranties a significant shortening of execution time.


2013 ◽  
Vol 278-280 ◽  
pp. 350-353 ◽  
Author(s):  
Feng Gao ◽  
Lin Jing Xiao ◽  
Shuai Guo ◽  
Hong Gang Ma

This paper mainly analyzes the hydraulic system principle during the monorail braking, and come to a conclusion that the spring stiffness and the throttle valve flow area are main factors affect the brake system. Then we use the MSC.EASY5 to modeling the hydraulic system, and simulate the unloading time of hydraulic cylinder under the spring force, the result shows that, the response time of a braking system can meet the requirement of the coal mine safety regulation, and change the flow area of throttle valve will affect the brake system.


2021 ◽  
Vol 23 (1) ◽  
pp. 37-41
Author(s):  
Darko Babunski ◽  
◽  
Emil Zaev ◽  
Atanasko Tuneski ◽  
Laze Trajkovski ◽  
...  

Friction is a repeatable and undesirable problem in hydraulic systems where always has to be a tendency for its removal. In this paper, the friction model is presented through which the most accurate results are achieved and the way of friction compensation, approached trough technique presented with the mathematical model of a hydraulic cylinder of a hydro turbine wicket gate controlled by a servomechanism. Mathematical modelling of a servo mechanism and hydraulic actuator, and also the simulation of hydraulic cylinder as a part of a hydro turbine wicket gate hydraulic system where the stick-slip phenomenon is present between the system components that are in contact is presented. Applied results in this paper and the theory behind them precisely demonstrate under what circumstances the stick-slip phenomenon appears in such a system. The stick-slip effect is simulated using Simulink and Hopsan software and the analysis of the results are given in this paper. Removal of the stick-slip effect is presented with the design of a cascade control implemented to control the behaviour of the system and remove the appearance of a jerking motion.


Sign in / Sign up

Export Citation Format

Share Document