Synthesis and Characterization of Antimony Doped Tin Oxide Conductive Nanoparticles by Alkoxide Hydrolysis Method

2013 ◽  
Vol 702 ◽  
pp. 167-171 ◽  
Author(s):  
Fu Liang Zhu ◽  
Yan Shuang Meng

Antimony doped tin oxide (ATO) conductive nano-particles are synthesised by alkoxide hydrolysis method using SnCl4•5H2O and SbCl3 as raw materials. The optimum parameters are determined as: Sb3+ doped molar concentration 15%, reaction temperature 60°C and roasting temperature 600°C. Under optimum conditions, the synthesised nano-particles are characterized by means of X-ray diffraction (XRD) and transmission electron microscope (TEM). XRD results show that all Sb ions came into the SnO2 lattice to substitute Sn ions. The image of TEM shows the ATO conductive nano-particles average size is 5 nm. Volume resistivity lowest value of ATO nano-particles is 141 Ω•cm.

2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


2020 ◽  
Vol 32 (6) ◽  
pp. 1505-1510
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Anees Ahmad

In present study, the synthesis and characterization of a novel polypyrrole (PPy)/tin oxide (SnO2)/MWCNT nanocomposite along with pristine polypyrrole is reported. These materials have been studied for their structural and morphological properties by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. PPy/SnO2/MWCNT nanocomposite has been converted into a pellet-shaped sensor, and its ammonia sensing studies were carried out by calculating the variation in the DC electrical conductivity at different concentration of ammonia ranging from 10 to 1500 ppm. The sensing response of the sensor was determined at 1500, 1000, 500, 200, 100 and 10 ppm and found to be 70.4, 66.1, 62.2, 55.4, 50.8 and 39.7%, respectively The sensor showed a complete reversibility at lower concentrations along with excellent selectivity and stability. Finally, a sensing mechanism was also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of ammonia molecules


2012 ◽  
Vol 512-515 ◽  
pp. 2019-2022 ◽  
Author(s):  
Xiao Lu Liang ◽  
Xian Hua Wei

Cu2FeSnS4semiconductor nanocrystals with zincblende structure have been successfully synthesized by a hot-injection approach. Cu+, Fe2+, and Sn4+cations have a random distribution in the zincblende unit cell, and the occupancy possibilities are 1/2, 1/4 and 1/4, respectively. Those nanocrystals were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectroscopy (EDS), and UV-Vis-NIR absorption spectroscopy. The Cu2FeSnS4 nanocrystals have an average size of 7.5 nm and a band gap of 0.92 eV.


2011 ◽  
Vol 347-353 ◽  
pp. 3472-3476
Author(s):  
Guang Xiu Cao ◽  
Tian Liu ◽  
Qing Hong Zhang ◽  
Hong Zhi Wang

A simple method for preparing nanoscale copper ferrite particles with narrow distribution and uniform size was developed by auto-combusting the precursor using copper nitrate, iron nitrate, and malic acid as raw materials. The constituents and the thermal decomposition process of the precursor were studied by Fourier transform infrared (FT-IR), thermogravimetry-differental thermal analysis (TG-DTA) and X-ray diffraction (XRD). The results showed that the carboxyl and nitrate ion take part in the reaction during the auto-combustion process. The precursor decomposed completely at about 199 °C, to yield single phase product. Transmission electron microscopy (TEM) indicated that the average size of the as-burnt sample was about 90 nm.


2011 ◽  
Vol 197-198 ◽  
pp. 1139-1142 ◽  
Author(s):  
Xiao Lin Jia ◽  
Mei Pin Ma ◽  
Wei Liu ◽  
Li Tian ◽  
Xiao Peng Mo

LiFePO4/C nano-particles were synthesized by microwave assisted carbothermal reduction method, using LiOH•H2O,FePO4•2H2O and sucrose as raw materials. LiFePO4/C samples with different particle sizes were prepared by heating at different temperatures in an industrial microwave oven. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, laser particle sizer analysis and electrochemical performance test. The results showed that the average size of samples is about 100 to 300 nm. The first discharge capacity decreased with the increase of temperature. The LiFePO4/C particles prepared at temperature of 700°С for 15 min exhibited the best capacity of 156.9mAh/g at 0.2C rate, and had just ~6% capacity loss after 50th cycles.


2014 ◽  
Vol 625 ◽  
pp. 164-167
Author(s):  
Mohd Aliff Irham Md. Azhar ◽  
Sujan Chowdhury ◽  
Pradip Chandra Mandal ◽  
Muhd Fahmi Daman ◽  
Sekhar Bhattacharjee ◽  
...  

Cerium Oxide (CeO2) nanocubes are synthesized by using hydrothermal treatment method in the presence of four different types of ionic liquid such as acetate anion, phosphate anion, and dicyanamide anion. Ceria nanocubes has been consisted with average size of 16 to 31 nm in diameter and characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), and surface analyzer and porosimetry analysis (ASAP). Ceria nanocubes have higher photocatalytical ability in the degradation of methylene blue as compared to commercial ceria nanoparticles which are confirmed through ultraviolet-visible spectroscopy (UV/Vis).


2012 ◽  
Vol 560-561 ◽  
pp. 284-288 ◽  
Author(s):  
Wei Qiang Pang ◽  
Xiao Bing Shi ◽  
Yang Li

The mono-dispersed Co3O4 nano-particles were prepared by means of solid phase synthetical method. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by laser particle size analysis, x-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The catalytic effects of nano-particles on the combustion of fuel rich propellant were investigated. The results show that the Co3O4 nano-particles prepared are uniform and with relatively wide size distribution curve. The catalytic effect of Co3O4 nano-particles on the fuel rich propellant is stronger than those of micro-sized Co3O4 particles and CuO nano-particles.


2011 ◽  
Vol 306-307 ◽  
pp. 404-409 ◽  
Author(s):  
Jian An Liu ◽  
Mei Mei Zhang ◽  
Yan Fei Zhang ◽  
Shu Jiang Liu

Nano-hexaferrite SrFe12O19 has been prepared using the aqueous solution method. The structure and magnetic properties of SrFe12O19 have systematically been investigated by X-ray diffraction (XRD), Thermo gravimetric (TG), Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM), as well as Vibrating Sample Magnetometer (VSM). The XRD and TEM results showed that the samples are composed of SrFe12O19 nano-particles which are on average 70×50nm in dimensions when treated at 1200°C for 2 hours. The magnetic properties indicated that the saturation magnetization and the intrinsic coercivity were 48 Am2/kg and 506KA/m, respectively. The aqueous solution method is generally applicable to produce the nano-hexaferrite SrFe12O19 and is proved to be a promising method for fast synthesis of nanometer materials using nitrate.


2011 ◽  
Vol 399-401 ◽  
pp. 593-596
Author(s):  
Chuan Gao Zhu ◽  
Feng Wu Wang

A method to prepare nickel oxide material which has a high purity and nano-sized particle was developed. nano NiO was synthesized by sol-gel method using nickel alkoxide as precursors. The structural characterization of the obtained materials was performed by thermal analysis TG-DTA, X-ray diffraction (XRD), Laser Raman spectra and Transmission Electron Microscopy (TEM). The characterization results indicated that NiO nano-particles (size 25–35 nm) are obtained by hydrolyzing of metal alkoxide of Ni(OCH2CH2OH)2 and possess high purity.


2012 ◽  
Vol 624 ◽  
pp. 59-62 ◽  
Author(s):  
Cai Xia Li ◽  
Jun Guo ◽  
Danyu Jiang ◽  
Qiang Li

In this paper, employing Cu(AC)2•H2O, SnCl2•2H2O and thiourea as raw materials, the composites of graphene/Cu2SnS3 quantum dots (QDs) were prepared simply and quickly using the hydrothermal method. Meanwhile, the separate Cu2SnS3 QDs were also synthesized in the same way. The as-obtained Cu2SnS3 QDs and composites’ phase structures were analyzed and characterized by powder X-ray diffraction (XRD), and the results indicated that the size of the Cu2SnS3 QDs in the composites were less than that of the separate Cu2SnS3 QDs. At the same time, their morphologies were also observed and cross-confirmed by Transmission Electron Microscopy (TEM), and the measurements manifested that Cu2SnS3 QDs were uniformly dispersed on the surface of the graphene, while the separate Cu2SnS3 QDs have obvious glomeration. In addition to this, elemental analysis was also made to verify the existence of Cu2SnS3 on the surface of graphene.


Sign in / Sign up

Export Citation Format

Share Document