Autonomous Cooperative Control for a Class of Linear System Based on Directed Graph

2013 ◽  
Vol 710 ◽  
pp. 558-562
Author(s):  
Zhao Ming Li ◽  
Ya Feng Niu ◽  
Yong Ming Gao

This paper proposes an autonomous cooperative control method for a class of linear system based on the directed graph, and the proof is given. The directed graph is used to describe the topology relationship among individuals in the system. The difference between desired and actual value of the system state is defined as error, and by exchanging error information among individuals, all individual states are synchronized up to the desired value. The control algorithm proposed in this paper has high robustness. Finally, the numerical simulation results show the correctness of the control law, and by configuring the control parameters reasonably, we can achieve high degree of control accuracy.

2013 ◽  
Vol 328 ◽  
pp. 67-71
Author(s):  
Zhao Ming Li ◽  
Yong Ming Gao ◽  
Ya Feng Niu

In consideration of the disturbance influence, the system always has nonlinear terms. This paper proposes an adaptive autonomous cooperative control method for a class of nonlinear system based on the directed graph. The directed graph is used to describe the topology relationship among individuals in the system. The difference between desired and actual value of the system state is defined as error, by exchanging error information among individuals, and online-updating the nonlinear terms, all individual states are synchronized up to the desired value. The differential of the actual state is not needed, which reduces the requirements for relative measurment between individuals efficiently. Finally, the numerical simulation results show the correctness of the control law, and by configuring the control parameters reasonably, we can achieve high degree of control accuracy.


Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

To solve the multi-interceptor coordination problem and to intercept the target with impact angle constraint, a novel distributed cooperative control algorithm with impact angle constraint based on integrated guidance and control is proposed. First, the mathematic model of integrated guidance and control is established by combining the interceptor-target relative motion model with the dynamic equation of the interceptor on pitch plane. The time varying gain extended state observer is developed to estimate and compensate the unknown disturbance. Based on the estimated value and fast nonsingular dynamic surface sliding control method, the IGC algorithm of leader is given; Then, based on distributed cooperative "leader-follower" model, the cooperative control strategy of multi-interceptor is designed, and gives out speeds in two directions on pitch plane, which are transformed to the command of total velocity and trajectory angle based on kinematic relations. Finally, to control the follower, the time varying gain extended state observer and the dynamic surface sliding control method are adopted. The simulation results demonstrate the effectiveness of the distributed cooperative control algorithm.


2014 ◽  
Vol 1016 ◽  
pp. 649-654
Author(s):  
Ya Feng Niu ◽  
Yong Ming Gao

This paper discusses the cooperative control for formation keeping of fractionated spacecraft, which is a new concept in recent years. For system of second-order differential equations of formation flying dynamics, knowledge of graph and consensus theory is introduced in study. By means of the idea of sliding mode control, we design a tracking control law for time-varying desired signal. Via exchanging error information among modules, the control law can make errors synchronized up to zero to achieve tracking. Relative velocity information between modules is not needed in this control law, which will efficiently reduce the requirements for relative navigation between modules. Then we prove the stability of the control system. Finally numerical simulation results show the effectiveness of the control law. By configuring the control parameters reasonably, we can achieve high degree of control accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Shuang Huang ◽  
Xin Wu ◽  
Peixing Li

The yarn vibration causes the yarn tension value to fluctuate, causing a change in the amount of yarn feed, thus causing a deviation of the carpet pile height from the predetermined value. To solve this problem, the sliding mode control algorithm is used to design the sliding mode function and the sliding mode control law. And four variables in the yarn vibration system are controlled by the MATLAB software. For solving the chattering problem of the control law, the sliding mode control law is improved. The fuzzy sliding mode control algorithm based on the quasisliding mode is adopted. The results show that the sliding mode control algorithm is effective, but the sliding mode control force needs to be switched at high frequency and there is severe chattering. The fuzzy sliding mode control algorithm based on quasisliding mode is adopted to achieve better control effect with a smaller force. In addition, the control force does not have high-frequency switching, and the change is relatively stable, which reduces the chattering phenomenon of sliding mode control.


Author(s):  
M. L. Larsen ◽  
J. Cesbron ◽  
F. Anfosso-Lédée ◽  
C. Ropert ◽  
J. C. Dyre ◽  
...  

In this paper, a versatile drum setup for measuring rolling resistance of small wheels is presented. The purpose is to provide a flexible setup for testing of models for rolling resistance under controlled circumstances. To demonstrate this, measurements of rolling resistance with a series of sandpapers of different grit sizes representing surface textures were carried out. The measurements show a clear increase in the rolling-resistance coefficient with increasing surface roughness, rolling speed and load. Numerical calculations in the time domain for a visco-elastic contact model run on equivalent surfaces agree with the trends found experimentally. We conclude that this approach to simplifying the experiment in order to obtain a high degree of control, accuracy and repeatability is useful for validating and testing models for calculating the rolling resistance for a given surface texture.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Yuanchun Li ◽  
Tianhao Ma ◽  
Bo Zhao

For the probe descending and landing safely, a neural network control method based on proportional integral observer (PIO) is proposed. First, the dynamics equation of the probe under the landing site coordinate system is deduced and the nominal trajectory meeting the constraints in advance on three axes is preplanned. Then the PIO designed by using LMI technique is employed in the control law to compensate the effect of the disturbance. At last, the neural network control algorithm is used to guarantee the double zero control of the probe and ensure the probe can land safely. An illustrative design example is employed to demonstrate the effectiveness of the proposed control approach.


2018 ◽  
Vol 61 (3) ◽  
pp. 873-883
Author(s):  
Chengming Luo ◽  
Ahmad Mohsenimanesh ◽  
Claude Laguë

Abstract. The mobile operating mode of agricultural Wide-Span Implement Carriers (WSICs) requires accurate synchronization of the forward motions of the two supporting tractors. The guidance task for WSIC operations is currently performed by human operators, which is labor-intensive and can be inaccurate. To replace the traditional human steering and control process, an automatic guidance system adapted to the mobile mode of the WSIC was designed and tested. A master-slave cooperative control method was applied, and the steering angle control law for both the master and slave vehicles and the velocity control law for the slave vehicle were derived. A scaled-down robotic platform was developed by integrating two heavy-duty mobile robots, a dual-rover real-time kinematic GPS (RTK-GPS), two inertial measurement units (IMUs), two XBee-PRO wireless communication modules, and two groups of control processors. Validation experiments were performed using the robotic platform on a flat and firm surface. Results of the single-robot path-following experiment verified the effectiveness of the steering angle control law. Results of the two synchronous tracking experiments, one with a constant reference velocity of 0.3 m s-1 and one with a varying reference velocity of 0.2 to 0.6 m s-1, showed that the two robots could perform their individual path-following tasks accurately while keeping their relative offset to less than 0.1 m. In the experiment with a constant reference velocity, the average, root mean square (RMS), maximum lead, and maximum lag of the offset errors were 0.01, 0.03, 0.05, and 0.06 m, respectively. Slightly larger average, RMS, and maximum lead offset errors were observed in the experiment with a varying reference velocity, which were 0.02, 0.04, and 0.09 m, respectively. These experimental results confirmed that the designed control laws for the synchronous tracking of the WSIC vehicles were effective and the developed automatic guidance system was reliable and applicable. Keywords: Automatic guidance, Master-slave control, Synchronous tracking, Wide-Span Implement Carrier (WSIC).


2012 ◽  
Vol 166-169 ◽  
pp. 1237-1240
Author(s):  
Ying Pan ◽  
Tong Zhao

In this paper, the hybrid control method of earthquake excited high-raised buildings is put forword. The building is modeled as a shear-wall type structure with non-linear hysteretic restoring forces after the structure enters the period of nonlinear and plasticity. A passive base-isolation is combined with actuators applied at the basement of the structure. A candidate for Liapunov function is found out based on the theory of energy. A non-linear control law is designed following the theory of Liapunov, since small residual deformations have to be tolerated due to inelastic energy dissipation, asymptotic stability will not be required, but only stability in the sense of Liapunov has to be guaranteed. Computer simulations demonstrate the efficiency of the proposed control algorithm.


Author(s):  
Youjian Lei

In recent years, manipulator control has been widely concerned, and its uncertainty is one of the focuses. As we all know, the manipulator is a MIMO nonlinear system, which has the characteristics of severe variable coupling, large time-varying amplitude of parameters and high degree of nonlinearity. Therefore, a lot of uncertain factors must be considered when designing the control algorithm of manipulator system. The predictive control algorithm adopts online rolling optimization, and in the process of optimization, feedback correction is carried out by the difference between the actual output and the reference output. It can iterate the predictive model and suppress the influence of some uncertain disturbances to a certain extent. Therefore, the design of predictive controller for robot is not only of theoretical significance, but also of great practical significance. The trajectory tracking problem is proposed in this paper, and a predictive control method for master slave robotic manipulator with sliding mode controller is designed. In addition, when external disturbances occurred, the approximation errors are compensated by the proposed control method. Finally, The results demonstrate that the stability of the controllers can be improved for the trajectory tracking errors.


Sign in / Sign up

Export Citation Format

Share Document