Surface Finish Assessment of Polishing Process of Tool Steels by Abrasion, Using Diamond and Alumina Particles

2013 ◽  
Vol 716 ◽  
pp. 423-429 ◽  
Author(s):  
André Marcon Zanatta ◽  
José Divo Bressan ◽  
Jefferson de Oliveira Gomes ◽  
Fábio Dondeo Origo ◽  
Alvaro José Damião

The present work investigates the surface finishing of two mould tool steels (WNr 1.2738~P20 and WNr 1. 4305) after polishing by conventional method and automatic laboratory equipment. These steels are employed in the fabrication of polymer injection moulds due to its good machinability, homogeneous microstructure and hardness. The polishing process was performed in laboratory by manual and automated processes. The surface finishing was measured by mechanical and optical methods. In the manual polishing, SiC paper grit 320, 600 and 1200 was used. Final polishing was carried out with polishing cloth containing 0.3 μm alumina suspension or 6 μm and 1 μm diamond suspension. Alternately, polishing of steel specimens in the specially developed laboratory automatic equipment was performed using a large rotating disc at 140 rpm, nominal pressures of 0.013 Pa, 0.139 Pa and 0.244 Pa and diamond paste with particle size 1 μm. Surface finish of specimens were compared as a function of the particle size and polishing time by three methods: the roughness parameter Rz (mean of maximum roughness depth) using a stylus probe, light reflectance with an integrating sphere connected to a spectrophotometer, and reflected diffuse light intensity analysis of a He-Ne laser. Specimen surface images were also obtained by an optical microscope to compare the topography after polishing. From the plot of roughness measurements versus particle size and intensity of diffuse light versus particle size, it was observed that both roughness parameter Rz and the intensity of diffuse light decreased linearly with the abrasive particle size for the manual polishing method. The method of light reflectance measurements shows an approximately constant value of 55 % for all particle size. Therefore, the better methods to assess surface finish of tool steels are the roughness parameter Rz and the intensity of diffuse light by laser method. For the automatic polishing, the results show that there is an optimized time for minimum roughness which is 5 minute. Other relevant aspects of surface finish by particle abrasion are also discussed.

2016 ◽  
Vol 853 ◽  
pp. 52-57
Author(s):  
Pedro José Núñez ◽  
E. Beamud ◽  
Eustaquio García Plaza ◽  
J. García-Sanz-Calcedo ◽  
Alfonso González González ◽  
...  

This study presents an integrated approach to the teaching of surface metrology and the regulation of electrochemical polishing process control parameters. The electropolishing processes permits different ranges of surface finish through different combinations of the process parameters of current density (J) and electropolishing time (t), and students must have a sound knowledge of the procedure for selecting filters (λs, λc, λf). Thus, experimental trials are undertaken to establish the influence of current density (J) and electropolishing time (t) on surface finish by measuring the arithmetic average roughness parameter (Ra), and setting the filters and measurement procedure for each range of surface finish. The integrated learning of both disciplines enables students to consolidate their knowledge on the methodology for measuring surface roughness (Ra), and to establish direct correlations between variation in process control parameters and the surface finish obtained by characterizing the behaviour of the process.


2021 ◽  
Author(s):  
Karan Singh Jamwal ◽  
Anant Kumar Singh ◽  
Kunal Arora ◽  
Sunil Kumar Paswan

Abstract Aerostatic bearing is an ultra-precision component that uses a spindle surrounded by a thin film of air. Due to the high accuracy of aerostatic bearing, the demand for these components is very high in electronic, instrumentation, healthcare, and other manufacturing or processing industries. In the present work, the main focused area is on the experimental determination of the effect of roughness parameter on the performance of the aerostatic journal and thrust bearings. To achieve the aim, the aerostatic bearing is designed based on theoretical analysis. The present design is numerically investigated by simulation of airflow in ANSYS Fluent with computational fluid dynamics module. The results from the simulation are validated by the results generated for pressure distribution in previous researches. After performing the finishing on the bearing and spindle surface, the manufactured components are assembled for analysing the variation in radial and axial loads acting on the spindle with the spindle displacement (1-5 μm) in the direction of the load at supply pressures (3-6 bar) in the clearance of 30 μm. For surface improvement of the air bearing, three different techniques are used namely machining, grinding, and magnetorheological finishing. For each roughness reduction technique, the variation in axial and radial loads acting on the spindle is determined with variation in spindle displacement. The experimental results showed the increase in load capacity due to improvement in the surface finish for journal bearing and thrust bearing at 5 µm displacement in the spindle is found to be 0.68 N for machining to grinding and 2.0 N from grinding to magnetorheological finishing respectively. The results determined for the surface finish parameter reveals the effect of surface roughness on the load-carrying capacity of the aerostatic journal and thrust bearing. The current study on the surface finishing of aerostatic bearing is found effective for the applications such as drives in production machines where good grade of surface finish are the major parameters for improving the overall functional efficiency.


2021 ◽  
pp. 251659842110157
Author(s):  
Chinu Kumari ◽  
Sanjay Kumar Chak

Magneto-rheological abrasive honing (MRAH) is an unconventional surface finishing technique that relies on abrasives mixed with a unique finishing fluid, which changes its characteristics on magnetic field application. This process imparts nanometric-level surface finish with a significant amount of uniformity. Rotating motion of the workpiece and continuous reciprocation of the finishing fluid in the MRAH process are recognized as the major aspects for adopting this process in finishing non-magnetic materials. The finishing obtained through the MRAH process relies on the workpiece’s material properties and process parameters such as concentration of abrasives in finishing fluid, rotational speed of the workpiece, and magnetic field strength/magnetizing current. To study the efficacy of MRAH process, a parametric study was conducted by performing few experiments on a brass workpiece. Design of experiment approach was adopted to plan the experiments, and the effect of different values of magnetizing current, the concentration of abrasives, and rotational speed on the surface finish were analyzed through the application of analysis of variance (ANOVA). From ANOVA, the rotational speed was found as the most significant parameter with a contribution of 48.90% on % reduction in roughness value (%∇Ra). Around 57% of roughness reduction was obtained at the optimized value of process parameters.


2021 ◽  
Vol 114 ◽  
pp. 116-124
Author(s):  
Gabriela Slabejová ◽  
MÁRIA ŠMIDRIAKOVÁ

Colour stability of surface finishes on thermally modified beech wood. The paper deals with the influence of the type of transparent surface finish on the change of colour of the surfaces of native beech wood and thermally modified wood. At the same time, the colour stability of three surface finishes on the surfaces of native and thermally modified beech wood was monitored. Beech wood was thermally modified at temperature of 125 °C for 6 hours. The thermal treatment was performed in a pressure autoclave APDZ 240, by the company Sundermann s.r.o in Banská Štiavnica. Three various types of surface finishes (synthetic, wax-oil, water-based) were applied onto the wood surfaces. The colour of the surfaces of native wood and thermally modified wood was measured in the system CIELab before and after surface finishing; the coordinates L*, a*, b*, C*ab and h*ab were measured. From the coordinates measured before and after surface finishing, the differences were calculated and then the colour difference ∆E* was calculated. Subsequently, the test specimens with the surface finishes were exposed to natural sunlight, behind glass in the interior for 60 days. The surface colour was measured at specified time of the exposure (10, 20, 30, 60 days). The results showed that the colour of the wood surfaces changed after application of the individual surface finishes; and the colour difference reached a change visible with a medium quality filter up to a high colour difference. The wax-oil surface finish caused a high colour difference on native wood and on thermally modified wood as well. On native beech wood, the lowest colour difference after exposure to sunlight was noticeable on the synthetic surface finish. On the surface of wood thermally modified, after exposure to sunlight, the lowest colour difference was noticeable on the surface with no surface finish.


2021 ◽  
Vol 2021 (49) ◽  
pp. 37-44
Author(s):  
I. B. Ivasiv ◽  

It has been proposed to utilize the median algorithm for determination of the extrema positions of diffuse light reflectance intensity distribution by a discrete signal of a photodiode linear array. The algorithm formula has been deduced on the base of piecewise-linear interpolation for signal representation by cumulative function. It has been shown that this formula is much simpler for implementation than known centroid algorithm and the noise immune Blais and Rioux detector algorithm. Also, the methodical systematic errors for zero noise as well as the random errors for full common mode additive noises and uncorrelated noises have been estimated and compared for mentioned algorithms. In these terms, the proposed median algorithm is proportionate to Blais and Rioux algorithm and considerably better then centroid algorithm.


2014 ◽  
Vol 984-985 ◽  
pp. 15-24 ◽  
Author(s):  
S. Srikiran ◽  
K. Ramji ◽  
B. Satyanarayana

The generation of heat during machining at the cutting zone adversely affects the surface finish and tool life. The heat at the cutting zone, which plays a negative role due to poor thermal conductivity, resistance to wear, high strength at high temperatures and chemical degradation can be overcome by the use of proper lubrication. Advancements in the field of tribology have led to the use of solid lubricants replacing the conventional flood coolants. This work involves the use of nanoparticulate graphite powder as a lubricant in turning operations whose performance is judged in terms of cutting forces, tool temperature and surface finish of the work piece. The experimentation revealed the increase in cutting forces and the tool temperature when the solid lubricant used is decreased in particle size. The surface finish deteriorated with the decrease in particle size of the lubricant in the nanoregime.Keywords-Turning, Solid lubricant, Graphite, Minimum Quantity Lubrication, nano–particles,Weight percentage,Frictioncoefficient.


Sign in / Sign up

Export Citation Format

Share Document