Parametric Study of Crowned Blade in Horizontal Axial Turbine

2013 ◽  
Vol 732-733 ◽  
pp. 443-450
Author(s):  
Jun Wei Zhou ◽  
Da Zheng Wang

The horizontal axial turbine could extract kinetic energy from both wind and tidal stream. In this paper, a type of horizontal axial turbine was designed with a crown stalled on the blade tip and the turbine was analyzed in a tidal stream. Several turbines with different geometries of the crowns were compared, whose power coefficients were numerically simulated by the CFD method. Effects of the crown design parameters, such as crown setting directions and different widths on turbine efficiency were discussed. Furthermore, when the turbine worked at different tip speed ratio, the results were discussed, either. By analysis of the results, it is could be concluded that a circular crown was sufficient to eliminate blade tip loss caused by tip leakage flow. The upstream semicircle crown modified the corresponding side foil pressure distribution to the design value, and so did the downstream semicircle crown. In the ellipse crowns testing, turbine efficiency was approximately in line with the value of crowns width. When the turbine with the circular crown worked at a little higher tip speed ratio than the design value, the crown was effective as before.

Author(s):  
M. Abda ◽  
M. G. Rose

Abstract The inevitable gap between the rotor tips and the casing promotes flow leakage driven by the pressure difference between the pressure side and suction side of the blade. Axisymmetric tip gap profiling was applied at the blade tip and the casing endwall to reduce the tip leakage maintaining the same gap clearance. The investigation was held on a shroudless single stage axial turbine designed in ETH Zurich University named LISA D. The numerical calculation showed that axisymmetric tip gap profiling reduced the tip leakage flow and improved the efficiency by 0.65% and 0.1% respectively. However, the stage mass flow increased and as a result so did the rotor capacity. When the stage mass flow was reduced to the design value to maintain the design capacity, the effect of the axisymmetric tip gap profiling further improved, due to a reduction in the entropy generation rate of the tip leakage and passage vortices. The tip mass flow reduced by 2.39% and the efficiency improved significantly by 0.6%. It was observed that the tip profiling increased the size of the separation bubble in the PS/tip junction, which increased blockage effect in the gap. Hence, reduced the leaking flow to the SS, which results in weaker tip leakage vortex and its associated losses.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


2012 ◽  
Vol 229-231 ◽  
pp. 2478-2480
Author(s):  
Bin Guo ◽  
Da Zheng Wang ◽  
Jun Wei Zhou

In this paper, the tidal stream turbine blade is designed by using blade element momentum (BEM) theory. The bidirectional airfoil is created derived from NACA airfoil. Ansys-CFX is used to predict the hydrodynamic performance of this bidirectional airfoil, and it turns out that the bidirectional airfoil works well at both of the tidal current directions. A test turbine named rotor 2 is used, and a comparison is made between experimental results of the test turbine and numerical prediction results to prove the correctness of the numerical method. The power coefficient of bidirectional tidal stream turbine obtained by CFD method is 39.36% at the design tip speed ratio.


2019 ◽  
Vol 15 (6) ◽  
pp. 1121-1135
Author(s):  
Fujuan Tong ◽  
Wenxuan Gou ◽  
Lei Li ◽  
Zhufeng Yue ◽  
Wenjing Gao ◽  
...  

Purpose In order to improve the engine reliability and efficiency, an effective way is to reform the turbine blade tip conformation. The paper aims to discuss this issue. Design/methodology/approach The present research provides several novel tip-shaping structures, which are considered to control the blade tip loss. Four different tip geometries have been studied: flat tip, squealer tip, flat tip with streamwise ribs and squealer tip with streamwise ribs. The tip heat transfer and leakage flow are both analyzed in detail, for example the tip heat transfer coefficient, tip flow and local pressure distributions. Findings The results show that the squealer seal and streamwise rib can reduce the tip heat transfer and leakage loss, especially for the squealer tip with streamwise ribs. The tip and near-tip flow patterns at the different locations of axial chord reflect that both the squealer seal and streamwise rib structure can control the tip leakage flow loss. In addition, the analysis of the aerodynamic parameters (the static pressure and turbine efficiency) also indicates that the squealer tip with streamwise ribs obtains the highest adiabatic efficiency with an increase of 2.34 percent, compared with that of the flat tip case. Originality/value The analysis of aerothermal and dynamic performance can provide a reference for the blade tip design and treatment.


Author(s):  
C. De Maesschalck ◽  
S. Lavagnoli ◽  
G. Paniagua

In high-speed unshrouded turbines tip leakage flows generate large aerodynamic losses and intense unsteady thermal loads over the rotor blade tip and casing. The stage loading and rotational speeds are steadily increased to achieve higher turbine efficiency, and hence the overtip leakage flow may exceed the transonic regime. However, conventional blade tip geometries are not designed to cope with supersonic tip flow velocities. A great potential lays in the modification and optimization of the blade tip shape as a means to control the tip leakage flow aerodynamics, limit the entropy production in the overtip gap, manage the heat load distribution over the blade tip and improve the turbine efficiency at high stage loading coefficients. The present paper develops an optimization strategy to produce a set of blade tip profiles with enhanced aerothermal performance for a number of tip gap flow conditions. The tip clearance flow was numerically simulated through two-dimensional compressible Reynolds-Averaged Navier-Stokes (RANS) calculations that reproduce an idealized overtip flow along streamlines. A multi-objective optimization tool, based on differential evolution combined with surrogate models (artificial neural networks), was used to obtain optimized 2D tip profiles with reduced aerodynamic losses and minimum heat transfer variations and mean levels over the blade tip and casing. Optimized tip shapes were obtained for relevant tip gap flow conditions in terms of blade thickness to tip gap height ratios (between 5 and 25), and blade pressure loads (from subsonic to supersonic tip leakage flow regimes) imposing fixed inlet conditions. We demonstrated that tip geometries which perform superior in subsonic conditions are not optimal for supersonic tip gap flows. Prime tip profiles exist depending on the tip flow conditions. The numerical study yielded a deeper insight on the physics of tip leakage flows of unshrouded rotors with arbitrary tip shapes, providing the necessary knowledge to guide the design and optimization strategy of a full blade tip surface in a real 3D turbine environment.


Author(s):  
Marc Gugau ◽  
Harald Roclawski

With emission legislation becoming more stringent within the next years, almost all future internal combustion gasoline engines need to reduce specific fuel consumption, most of them by using turbochargers. Additionally, car manufactures attach high importance to a good drivability, which usually is being quantified as a target torque already available at low engine speeds—reached in transient response operation as fast as possible. These engine requirements result in a challenging turbocharger compressor and turbine design task, since for both not one single operating point needs to be aerodynamically optimized but the components have to provide for the optimum overall compromise for maximum thermodynamic performance. The component design targets are closely related and actually controlled by the matching procedure that fits turbine and compressor to the engine. Inaccuracies in matching a turbine to the engine full load are largely due to the pulsating engine flow characteristic and arise from the necessity of arbitrary turbine map extrapolation toward low turbine blade speed ratios and the deficient estimation of turbine efficiency for low engine speed operating points. This paper addresses the above described standard problems, presenting a methodology that covers almost all aspects of thermodynamic turbine design based on a comparison of radial and mixed-flow turbines. Wheel geometry definition with respect to contrary design objectives is done using computational fluid dynamics (CFD), finite element analysis (FEA), and optimization software. Parametrical turbine models, composed of wheel, volute, and standard piping allow for fast map calculation similar to steady hot gas tests but covering the complete range of engine pulsating mass flow. These extended turbine maps are then used for a particular assessment of turbine power output under unsteady flow admission resulting in an improved steady-state matching quality. Additionally, the effect of various design parameters like either volute sizing or the choice of compressor to turbine diameter ratio on turbine blade speed ratio operating range as well as well as turbine inertia effect is analyzed. Finally, this method enables the designer to comparatively evaluate the ability of a turbine design to accelerate the turbocharger speed for transient engine response while still offering a map characteristic that keeps fuel consumption low at all engine speeds.


2015 ◽  
Vol 9 (1) ◽  
pp. 910-915 ◽  
Author(s):  
Lijun Xu ◽  
Lei Xu ◽  
Lei Zhang ◽  
Ke Yang

large-scaled blade has posed many problems related to design and production. After introducing the features of blade with thick airfoils and flatback, based on relevant parameters of Huaren 100 kW wind turbine, the paper designed blade with thick airfoils and flatback, introduced blade parameter design, and analyzed the aerodynamic performance of blades using GH bladed software, obtaining the relationship between power output of wind turbine with blade tip speed ratio Cp. Furthermore, it analyzed the aerodynamic performance of original design blades, modified blades and Huaren 100 kW blades, and assessed the aerodynamic performance of modified blade.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
H. Maral ◽  
C. B. Şenel ◽  
K. Deveci ◽  
E. Alpman ◽  
L. Kavurmacıoğlu ◽  
...  

Abstract Tip clearance is a crucial aspect of turbomachines in terms of aerodynamic and thermal performance. A gap between the blade tip surface and the stationary casing must be maintained to allow the relative motion of the blade. The leakage flow through the tip gap measurably reduces turbine performance and causes high thermal loads near the blade tip region. Several studies focused on the tip leakage flow to clarify the flow-physics in the past. The “squealer” design is one of the most common designs to reduce the adverse effects of tip leakage flow. In this paper, a genetic-algorithm-based optimization approach was applied to the conventional squealer tip design to enhance aerothermal performance. A multi-objective optimization method integrated with a meta-model was utilized to determine the optimum squealer geometry. Squealer height and width represent the design parameters which are aimed to be optimized. The objective functions for the genetic-algorithm-based optimization are the total pressure loss coefficient and Nusselt number calculated over the blade tip surface. The initial database is then enlarged iteratively using a coarse-to-fine approach to improve the prediction capability of the meta-models used. The procedure ends once the prediction errors are smaller than a prescribed level. This study indicates that squealer height and width have complex effects on the aerothermal performance, and optimization study allows to determine the optimum squealer dimensions.


Author(s):  
Loc Q. Duong ◽  
Nagamany Thayalakhandan

The design of a turbine blade is a complex task involving the simultaneous optimization and compromise of different disciplines with the most important ones are aerodynamics and structures. Aerodynamics mainly involves optimizing blade profiles for minimum pressure loss while structures deals with fatigue and creep life. In small gas turbine application, the turbine pocket blade with aspect ratio less than unity is a typical case of such aero-mechanical optimization. The objective of this paper is to address two crucial topics encountered by such blade design configuration. They are (a) the integrity of the re-enforced pin and pocket fix-end wall under thermal cyclic loading resulting from combustor pattern factor and in combination with blade transient resonance and (b) the minimization of tip leakage flow to improve turbine efficiency. Finite element method and computational fluid dynamics are used to illustrate the blade pocket physical states and its underlying solutions. Structural analysis indicated that a bi-slotted pin is a suited solution to reduce loading of HCF nature at the blade wall-pin interface. Aerodynamic simulation showed that the pocket blade tip with scooped configuration reduced the tip leakage flow.


Author(s):  
Xin Wang ◽  
Xianwu Luo ◽  
Baotang Zhuang ◽  
Weiping Yu ◽  
Hongyuan Xu

Recent years, the vertical-axis water turbine (VAWT) is widely used for converting the kinetic energy of the moving water in open flow and with low static head like river and tidal sites. Conventional numerical methods such as disk-stream tube method and vortex panel method have some drawbacks to predict the behaviors and characteristics of the vertical-axis tidal stream turbine. This paper had treated the hydrodynamic performance of a VAWT model experimentally and numerically. Based on the present research, a 6-DOF method coupled with CFD suitable to simulate the rotor movement and predict the hydraulic performance for a VAWT was proposed. Compared with the experiments, the numerical results for the performance of the VAWT model were reasonable. It is also noted that there is a maximum power coefficient near tip speed ratio of 2.5 for the test model.


Sign in / Sign up

Export Citation Format

Share Document